मराठी

यदि y = e–x (Acosx + Bsinx) तब y एक हल है - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि y = e–x (Acosx + Bsinx) तब y एक हल है

पर्याय

  • `("d"^2"y")/("d"x^2) + 2("dy")/("d"x)` = 0

  • `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y" ` = 0

  • `("d"^2"y")/("d"x^2) + 2 ("dy")/("d"x) + 2"y"` = 0

  • `("d"^2"y")/("d"x^2) + 2"y"` = 0

MCQ

उत्तर

सही उत्तर `underline(("d"^2"y")/("d"x^2) + 2 ("dy")/("d"x) + 2"y" = 0)`  है। 

व्याख्या:

दिया गया समीकरण y = e–x (Acosx + Bsinx) है

दोनों पक्षों का x के सापेक्ष अवकलन करने पर हमें प्राप्त होता है।

 `("dy")/("d"x)` = e–x (–A sin x + B cos x) – e–x (A cos x + B sin x)

`("dy")/("d"x)` = e–x (–A sin x + B cos x) – y

पुन: दोनों पक्षों का x के सापेक्ष अवकलन करने पर हमें प्राप्त होता है।

`("d"^2"y")/("d"x^2) = "e"^-x (-"A" cos x - "B" sin x) - "e"^-x (-"A" sinx + "B"cosx) - ("dy")/("d"x)`  

⇒ `("d"^2"y")/("d"x^2) = -"e"^-x ("A" cosx + "B" sinx) - [("dy")/("d"x) + "y"] - ("dy")/("d"x)`

⇒ `("d"^2"y")/("d"x^2) = - "y" - ("dy")/("d"x) - "y" - ("dy")/("d"x)`

⇒ `("d"^2"y")/("d"x^2) = - 2 ("dy")/("d"x) - 2"y"`

⇒ `("d"^2"y")/("d"x^2) + 2("dy")/("d"x) + 2"y"` = 0

shaalaa.com
अवकल समीकरण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १९१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 9 अवकल समीकरण
प्रश्नावली | Q 37 | पृष्ठ १९१

संबंधित प्रश्‍न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + 3y = e^(- 2x)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + (sec x)y = tan x (0 <= x <= pi/2)`


एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए। 


बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।


बिंदु 1,`pi/4` से जाने वाले वक् का समीकरण ज्ञात कीजिए यदि किसी बिंदु P (x, y) पर वक्र की स्पर्श रेखा की प्रवणता `"y"/x - cos^2"y"/x` है।


अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।


अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।


अवकल समीकरण `"dy"/"dx" + 1` = ex + y को हल कीजिए।


वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं।


उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।


Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए।


बिंदु (1, 1) से गुजरने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु P (x, y) से खींची गई स्पर्श रेखा, निर्देशांक अक्षों से A और B पर इस प्रकार मिलती है कि AB का मध्य बिंदु P है।


`x ("dy")/("d"x) = "y" (log "y" – log x + 1)` को हल कीजिए।


अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है


`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0  का हल है


अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है


वह वक्र जिसके लिए किसी बिंदु पर स्पर्श रेखा की प्रवणता उस बिंदु के x-अक्ष (भुज) तथा y-अक्ष (कोटि) के अनुपात के बराबर है वह है


अवकल समीकरण जिसका एक हल y = acosx + bsinx है


`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है


`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है


अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है


अवकल समीकरण `("d"^2"y")/("d"x^2) + "e"^(("dy")/("d"x))` = 0 की घात ______ है।


`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।


`("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक ______ है।


`("d"x)/("dy") = "g"(x, "y")` जहाँ g (x, y) एक शून्य घात वाला समघातीय फलन है, प्रकार के अवकल समीकरण को हल करने के लिए सही प्रतिस्थापन x = vy है।


`("dy")/("d"x) = ("y"/x)^(1/3)` का हल  `"y"^(2/3) - x^(2/3)` = c है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×