Advertisements
Advertisements
प्रश्न
y = Acos αx + Bsin αx जहाँ A और B स्वेछ अचर हैं के लिए अवकल समीकरण है
पर्याय
`("d"^2"y")/("d"x^2) - alpha^2"y"` = 0
`("d"^2"y")/("d"x^2) + alpha^2"y"` = 0
`("d"^2"y")/("d"x^2) + alpha"y"` = 0
`("d"^2"y")/("d"x^2) - alpha"y"` = 0
उत्तर
सही उत्तर `underline(("d"^2"y")/("d"x^2) + alpha^2"y" = 0)` है।
व्याख्या:
दिया गया समीकरण है: y = A cos a x + B sin a x
दोनों पक्षों का x के सापेक्ष अवकलन करने पर हमें प्राप्त होता है
`("dy")/("d"x) = -"A" sin alpha x * alpha + "B" cos alpha x * alpha`
= `- "A" alpha sin alphax + "B" alpha cos alpha x`
पुन: दोनों पक्षों का x के सापेक्ष अवकलन करने पर हमें प्राप्त होता है
`("d"^2"y")/("d"x^2) = -"A"alpha^2 cos alpha x - "B" alpha^2 sin alpha x`
⇒ `("d"^2"y")/("d"x^2) = -alpha^2 ("A" cos alphax + "B" sin alpha x)`
⇒ `("d"^2"y")/("d"x^2) = - alpha^2"y" `
⇒ `("d"^2"y")/("d"x^2) + alpha^2"y"` = 0
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + 3y = e^(- 2x)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + (sec x)y = tan x (0 <= x <= pi/2)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
(1 + x2)dy + 2xy dx = cot x dx (x ≠ 0)
अवकल समीकरण x`dy/dx - y = 2x^2` का समाकलन गुणक है:
वक्रों के कुल y = Ae2x + B.e–2x के लिए अवकल समीकरण ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।
एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए।
बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।
`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।
अवकल समीकरण `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` की घात है
अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।
`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।
दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।
`"dy"/"dx" + "a"y` = emx का व्यापक हल ज्ञात कीजिए।
वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं।
`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।
(x + y) (dx – dy) = dx + dy को हल कीजिए। [संकेत : dx और dy को पृथक करने के पश्चात x + y = z रखिए ]
`("dy")/("d"x) -3"y" = sin2x` का व्यापक हल ज्ञात कीजिए।
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^(1/4) + x^(1/5)` = 0, के कोटि और घात क्रमश: हैं
`(x"dy")/("d"x) - "y" = x^4 - 3x` का समाकलन गुणक है:
निम्न से कौन सा अवकल समीकरण कोटि 2 का है?
अवकल समीकरण `(1 - x^2) ("dy")/("d"x) - x"y"` = 1 का समाकलन गुणक है
`x ("dy")/("d"x) + "y"` = ex का हल है
अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है
`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है
अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है
`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।
`("d"x)/("d"x) + "P"_1x = "Q"_1` प्रकार के अवकल समीकरण का व्यापक हल ______ है।
वृत्तों के कुल x2 + (y – a)2 = a2 को निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।