Advertisements
Advertisements
प्रश्न
(x + y) (dx – dy) = dx + dy को हल कीजिए। [संकेत : dx और dy को पृथक करने के पश्चात x + y = z रखिए ]
उत्तर
दिया गया अवकल समीकरण (x + y)(dx – dy) = dx + dy है।
⇒ (x + y) dx – (x + y) dy = dx + dy
⇒ – (x + y) dy – dy = dx – (x + y)dx
⇒ – (x + y + 1) dy = – (x + y – 1)dx
⇒ `"dy"/"dx" = (x + y - 1)/(x + y + 1)`
x + y = z रखिए
∴ `1 + "dy"/"dx" = "dz"/"dx"`
`"dy"/"dx" = "dz"/"dx" - 1`
तो, `"dz"/"dx" - 1 = (" z" - 1)/("z" + 1)`
⇒ `"dz"/"dx" = ("z" - 1)/("z" + 1) + 1`
⇒ `"dz"/"dx" = ("z" - 1 + "z" + 1)/("z" + 1)`
⇒ `"dz"/"dx" = (2"z")/("z" + 1)`
⇒ `("z" + 1)/"z" "dz"` = 2 . dx
दोनों पक्षों को जोड़ने पर, हम प्राप्त करते हैं
`int ("z" + 1)/"z" "dz" = 2 int "d"x`
⇒ `int(1 + 1/2) "dz" = 2int "d"x`
⇒ `"z" + log|"z"| = 2x + log|"c"|`
⇒ `x + "y" + log|x + "y"| = 2x + log|"c"|`
⇒ `"y" + log|x + "y"| = x + log |"c"|`
⇒ `log|x + "y"| = x - "y" + log|"c"|`
⇒ `log|x + "y"| - log|"c"| = (x - "y")`
⇒ `log|(x + "y")/"c"| = (x - "y")`
⇒ `(x + "y")/"c" = "e"^(x - "y")`
∴ x + y = `"c" . "e"^(x - "y")`
अत: वाँछित हल x + y = `"c" . "e"^(x - "y")` है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
(1 + x2)dy + 2xy dx = cot x dx (x ≠ 0)
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`(1 + x^2) dy/dx + 2xy = 1/(1 + x^2); y = 0` यदि x = 1
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`dy/dx - 3 y cot x = sin 2x; y = 2` यदि x = `pi/2`
अवकल समीकरण `(1 - y^2) dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:
निम्नलिखित अवकल समीकरण में से कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।
`(d^2y)/dx^2 + 5x(dy/dx)^2 - 6y = log x`
एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए।
`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।
अवकल समीकरण `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` की घात है
वक्रों के कुल y = A sinx + B cosx को निरूपित करने वाला अवकल समीकरण ______ है।
अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।
F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।
अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।
दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।
वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं।
उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।
`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।
बिंदु (2, 1) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसका किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `(x^2 + "y"^2)/(2x"y")` है।
यदि y = e–x (Acosx + Bsinx) तब y एक हल है
`(x"dy")/("d"x) - "y" = x^4 - 3x` का समाकलन गुणक है:
`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है
निम्न से कौन सा अवकल समीकरण कोटि 2 का है?
अवकल समीकरण `(1 - x^2) ("dy")/("d"x) - x"y"` = 1 का समाकलन गुणक है
`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0 का हल है
अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है
`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है
`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।
`("dy")/("d"x) = "f"(x, "y")` जहाँ f (x, y) एक शून्य घात वाला समघातीय फलन है, को हल करने के लिए सही प्रतिस्थापन y = vx है।
`("d"x)/("dy") = "g"(x, "y")` जहाँ g (x, y) एक शून्य घात वाला समघातीय फलन है, प्रकार के अवकल समीकरण को हल करने के लिए सही प्रतिस्थापन x = vy है।
वृत्तों के कुल x2 + (y – a)2 = a2 को निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।
`x("dy")/("d"x) = "y" + x tan "y"/x` का हल `sin("y"/x)` = cx है।