हिंदी

(x + y) (dx – dy) = dx + dy को हल कीजिए। [संकेत : dx और dy को पृथक करने के पश्चात x + y = z रखिए ] - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

(x + y) (dx – dy) = dx + dy को हल कीजिए। [संकेत : dx और dy को पृथक करने के पश्चात x + y = z रखिए ]

योग

उत्तर

दिया गया अवकल समीकरण (x + y)(dx – dy) = dx + dy है।

⇒ (x + y) dx – (x + y) dy = dx + dy

⇒ – (x + y) dy – dy = dx – (x + y)dx

⇒ – (x + y + 1) dy = – (x + y – 1)dx

⇒ `"dy"/"dx" = (x + y - 1)/(x + y + 1)`

x + y = z रखिए

∴ `1 + "dy"/"dx" = "dz"/"dx"`

`"dy"/"dx" = "dz"/"dx" - 1`

तो, `"dz"/"dx" - 1 = (" z" - 1)/("z" + 1)`

⇒ `"dz"/"dx" = ("z" - 1)/("z" + 1) + 1`

⇒ `"dz"/"dx" = ("z" - 1 + "z" + 1)/("z" + 1)`

⇒ `"dz"/"dx" = (2"z")/("z" + 1)`

⇒ `("z" + 1)/"z" "dz"` = 2 . dx

दोनों पक्षों को जोड़ने पर, हम प्राप्त करते हैं

`int ("z" + 1)/"z" "dz" = 2 int "d"x`

⇒ `int(1 + 1/2) "dz" = 2int "d"x`

⇒ `"z" + log|"z"| = 2x + log|"c"|`

⇒ `x + "y" + log|x + "y"| = 2x + log|"c"|`

⇒ `"y" + log|x + "y"| = x + log |"c"|`

⇒ `log|x + "y"| = x - "y" + log|"c"|`

⇒ `log|x + "y"| - log|"c"| = (x - "y")`

⇒ `log|(x + "y")/"c"| = (x - "y")`

⇒ `(x + "y")/"c" = "e"^(x - "y")`

∴ x + y = `"c" . "e"^(x - "y")`

अत: वाँछित हल x + y = `"c" . "e"^(x - "y")` है।

shaalaa.com
अवकल समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १९०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 9 अवकल समीकरण
प्रश्नावली | Q 19 | पृष्ठ १९०

संबंधित प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`(x + y) dy/dx = 1`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`dy/dx + 2  y tan x = sin x`; y = 0 यदि x = `pi/4`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`(1 + x^2) dy/dx + 2xy = 1/(1 + x^2); y = 0` यदि x = 1


अवकल समीकरण `(1 - y^2)  dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:


वक्रों के कुल y = Ae2x + B.e–2x के लिए अवकल समीकरण ज्ञात कीजिए।


एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए। 


उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता `"y" + "y"/x` है।


बताइए कि समीकरण xdy – ydx = `sqrt(x^2 + "y"^2)  "d"x` किस प्रकार का अवकल समीकरण है तथा इसे हल कीजिए। 


अवकल समीकरण `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` की घात है


अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है


निम्न में से कौन सा x और y में समघातीय फलन नहीं है।


दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।


F(x, y) = `(x^2 + y^2)/(x - y)` कोटि 1 का समघातीय फलन है।


`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।


दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।


ydx – xdy = x2 ydx को हल कीजिए।


यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का  y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`


वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं।


उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।


`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।


`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।


बिंदु (1, 0) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `("y" - 1)/(x^2 + x)` है।


अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______


`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है


वह वक्र जिसके लिए किसी बिंदु पर स्पर्श रेखा की प्रवणता उस बिंदु के x-अक्ष (भुज) तथा y-अक्ष (कोटि) के अनुपात के बराबर है वह है


`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है


द्वितीय कोटि के अवकल समीकरण के विशिष्ट हल में स्वेच्छ अचरों की संख्या ं

दो होती है।


`("dy")/("d"x) = ("y"/x)^(1/3)` का हल  `"y"^(2/3) - x^(2/3)` = c है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×