हिंदी

Dydx2(y+3)-xydydx = 0 को हल कीजिए जबकि y (1) = – 2 दिया है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।

योग

उत्तर

दिया गया अवकल समीकरण `2("y" + 3) - x"y" "dy"/"dx"` = 0

⇒ `x"y"  "dy"/"dx"` = 2y + 6

⇒ `("y"/(2"y" + 6)) "dy" = "dx"/x`

⇒ `1/2 ("y"/("y" + 3))"dy" = "dx"/x`

दोनों पक्षों को जोड़ने पर, हम प्राप्त करते हैं

⇒ `1/2 int "y"/("y" + 3) "dy" = int "dx"/x`

⇒ `1/2 int ("y" - 3 - 3)/("y" + 3) "dy" = int "dx"/x`

⇒ `1/2 int (1 - 3/("y" + 3))"dy" = int "dx"/x`

⇒ `1/2 int "dy" - 3/2 int 1/("y" + 3) "dy" = int "dx"/x`

⇒ `1/2 "y" - 3/2 log |"y" + 3| = log x + "c"`

x = 1, y = –2 रखिए

⇒ `1/2 (-2) - 3/2 log|-2 + 3| = log(1) + "c"`

⇒ `-1 - 3/2 log(1) = log(1) + "c"`

⇒ – 1 – 0 = 0 + c   ....[∵ log (1) = 0]

∴ c = –1

∴ समीकरण `1/2 "y" - 3/2 log|"y" + 3| = log x - 1` है।

⇒ `"y" - 3 log |"y" + 3| = 2 log x - 2`

⇒ `"y" - 3 log|("y" + 3)^3| = log x^2 - 2`

⇒ `log|("y" + 3)^3| + log x^2 = "y" + 2`

⇒ `log|x^2 ("y" + 3)^3| = "y" + 2`

⇒ `x^2("y" + 3)^3 = "e"^("y" + 2)`

इसलिए, वाँछित हल `x^2("y" + 3)^3 = "e"^("y" + 2)` है।

shaalaa.com
अवकल समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १९०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 9 अवकल समीकरण
प्रश्नावली | Q 20 | पृष्ठ १९०

संबंधित प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x log x dy/dx + y = 2/x log x`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

y dx + (x – y2)dy = 0


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`(1 + x^2) dy/dx + 2xy = 1/(1 + x^2); y = 0` यदि x = 1


वक्रों के कुल y = Ae2x + B.e–2x के लिए अवकल समीकरण ज्ञात कीजिए।


अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।


बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।


`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।


अवकल समीकरण `2x * "dy"/"dx" y` = 3 का हल किस कुल को निरूपित करता है?


अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।


अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।


अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।


अवकल समीकरण `"y"^2 "dy"/"dx" + "y"^2 + 1` = 0 का एक हल x + y = tan–1y है।


`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।


y2dx + (x2 – xy + y2) dy = 0 का व्यापक हल ज्ञात कीजिए।


(x + y) (dx – dy) = dx + dy को हल कीजिए। [संकेत : dx और dy को पृथक करने के पश्चात x + y = z रखिए ]


अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______


निम्न से कौन सा अवकल समीकरण कोटि 2 का है?


ex cosy dx – ex siny dy = 0 का व्यापक हल है


अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है


वक्र कुल  y2 = 4a(x + a) का अवकल समीकरण है


अवकल समीकरण `("dy")/("d"x) + (2x"y")/(1 + x^2) = 1/(1 + x^2)^2` का हल है


`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।


`("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक ______ है।


`("d"x)/("dy") = "g"(x, "y")` जहाँ g (x, y) एक शून्य घात वाला समघातीय फलन है, प्रकार के अवकल समीकरण को हल करने के लिए सही प्रतिस्थापन x = vy है।


द्वितीय कोटि के अवकल समीकरण के विशिष्ट हल में स्वेच्छ अचरों की संख्या ं

दो होती है।


वक्रों के कुल y = ex (Acosx + Bsinx)  को निरूपित करने वाला अवकल समीकरण `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y"` = 0  है।


अवकल समीकरण `("dy")/("d"x) = (x + 2"y")/x` का हल x + y = kx2 है।


एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल

समीकरण `("d"^2x)/("dy"^2)` = 0 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×