हिंदी

अवकल समीकरण dddydx1+d2ydx2=x+dydx की घात परिभाषित नहीं है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।

विकल्प

  • सत्य

  • असत्य

MCQ
सत्य या असत्य

उत्तर

यह कथन सत्य है।

व्याख्या:

क्योंकि यह अपने अवकलजों में बहुपद समीकरण नहीं है।

shaalaa.com
अवकल समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अवकल समीकरण - हल किये हुए उदाहरण [पृष्ठ १८६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 9 अवकल समीकरण
हल किये हुए उदाहरण | Q 23. (ii) | पृष्ठ १८६

संबंधित प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x log x dy/dx + y = 2/x log x`


अवकल समीकरण `"dy"/"dx"` = yex,  x = 0, y = e में y का मान बताएं जब x = 1


अवकल समीकरण `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` की घात है


अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)`  के क्रमशः कोटि और घात हैं


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।


अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।


अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।


वक्रों के कुल y = A sinx + B cosx को निरूपित करने वाला अवकल समीकरण ______ है।


दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।


`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।


ydx – xdy = x2 ydx को हल कीजिए।


`(x + 2"y"^3)  "dy"/"dx"` = y का व्यापक हल ज्ञात कीजिए।


उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।


(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।


`x ("dy")/("d"x) = "y" (log "y" – log x + 1)` को हल कीजिए।


अवकल समीकरण `(("d"^2"y")/("d"x^2))^2 + (("dy")/("d"x))^2 = xsin(("dy")/("d"x))` की घात है


यदि y = e–x (Acosx + Bsinx) तब y एक हल है


y = Acos αx + Bsin αx जहाँ A और B स्वेछ अचर हैं के लिए अवकल समीकरण है


अवकल समीकरण `(1 - x^2) ("dy")/("d"x) - x"y"` = 1 का समाकलन गुणक है


tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?


अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है


`x ("dy")/("d"x) + "y"` = ex का हल है


अवकल समीकरण  `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है


`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है


अवकल समीकरण `(("d"^3"y")/("d"x^3))^2 - 3 ("d"^2"y")/("d"x^2) + 2(("dy")/("d"x))^4` = y4 की कोटि तथा घात क्रमश: है


अवकल समीकरण  `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"` का हल है


अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।


`("d"x)/("dy") + "p"_1x = "Q"_1` प्रकार के अवकल समीकरण के हल को x.I.F. = `("I"."F") xx "Q"_1"dy"` द्वारा दिया जाता है।


द्वितीय कोटि के अवकल समीकरण के विशिष्ट हल में स्वेच्छ अचरों की संख्या ं

दो होती है।


वृत्तों के कुल x2 + (y – a)2 = aको निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×