हिंदी

Ydydx(x+2y3) dydx = y का व्यापक हल ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`(x + 2"y"^3)  "dy"/"dx"` = y का व्यापक हल ज्ञात कीजिए।

योग

उत्तर

दिया गया समीकरण `(x + 2"y"^3)  "dy"/"dx"` = y है।

⇒ `"dy"/"dx" = "y"/(x + 2"y"^3)`

⇒ `"dx"/"dy" = (x + 2"y"^3)/"y"`

⇒ `"dx"/"dy" = x/"y" + (2"y"^3)/"y"`

⇒ `"dx"/"dy" - x/"y"` = 2y3

यहाँ P = `- 1/"y"` और Q = 2y2.

∴ समाकलन गुणक I.F. = `"e"^(int"Pdy")`

= `"e"^(int 1/"y" "dy")`

= `"e"^(-log "y")`

= `"e"^(log 1/"y")`

= `1/"y"`.

तो समीकरण का हल है

x.I.F. = `int "Q"."I"."F".  "dy" + "c"`

`x . 1/"y" = int 2"y"^2 . 1/"y"  "dy" + "c"`

⇒ `x/"y" = 2 int "y"  "dy" + "c"`

⇒ `x/"y" = 2. "y"^2/2 + "c"`

⇒ `x/"y" = "y"^2 + "c"`

तो x = y3 + cy = y(y2 + c)

इसलिए, वाँछित हल x = y(y2 + c) है।

shaalaa.com
अवकल समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १८९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 9 अवकल समीकरण
प्रश्नावली | Q 10 | पृष्ठ १८९

संबंधित प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`cos^2 x dy/dx + y = tan x (0 <= x < pi/2)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`(x + y) dy/dx = 1`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`(1 + x^2) dy/dx + 2xy = 1/(1 + x^2); y = 0` यदि x = 1


अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।


निम्न में से कौन सा x और y में समघातीय फलन नहीं है।


जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।


y2dx + (x2 – xy + y2) dy = 0 का व्यापक हल ज्ञात कीजिए।


अवकल समीकरण dy = cosx(2 – y cosecx) dx को हल कीजिए, दिया है कि x = `pi/2` तब y = 2 है।


अवकल समीकरण (1 + y2) tan–1xdx + 2y(1 + x2) dy = 0 को हल कीजिए।


`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।


`("dy")/("d"x) = cos(x + "y") + sin(x + "y")` को हल कीजिए [संकेत : x + y = z रखिए]


अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।


`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है


tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?


`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0  का हल है


अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है


वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है


वह वक्र जिसके लिए किसी बिंदु पर स्पर्श रेखा की प्रवणता उस बिंदु के x-अक्ष (भुज) तथा y-अक्ष (कोटि) के अनुपात के बराबर है वह है


`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है


अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है


वक्र कुल  y2 = 4a(x + a) का अवकल समीकरण है


अवकल समीकरण `("dy")/("d"x) + (2x"y")/(1 + x^2) = 1/(1 + x^2)^2` का हल है


अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।


`("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक ______ है।


`("d"x)/("dy") = "g"(x, "y")` जहाँ g (x, y) एक शून्य घात वाला समघातीय फलन है, प्रकार के अवकल समीकरण को हल करने के लिए सही प्रतिस्थापन x = vy है।


एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल

समीकरण `("d"^2x)/("dy"^2)` = 0 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×