Advertisements
Advertisements
प्रश्न
`(x + 2"y"^3) "dy"/"dx"` = y का व्यापक हल ज्ञात कीजिए।
उत्तर
दिया गया समीकरण `(x + 2"y"^3) "dy"/"dx"` = y है।
⇒ `"dy"/"dx" = "y"/(x + 2"y"^3)`
⇒ `"dx"/"dy" = (x + 2"y"^3)/"y"`
⇒ `"dx"/"dy" = x/"y" + (2"y"^3)/"y"`
⇒ `"dx"/"dy" - x/"y"` = 2y3
यहाँ P = `- 1/"y"` और Q = 2y2.
∴ समाकलन गुणक I.F. = `"e"^(int"Pdy")`
= `"e"^(int 1/"y" "dy")`
= `"e"^(-log "y")`
= `"e"^(log 1/"y")`
= `1/"y"`.
तो समीकरण का हल है
x.I.F. = `int "Q"."I"."F". "dy" + "c"`
`x . 1/"y" = int 2"y"^2 . 1/"y" "dy" + "c"`
⇒ `x/"y" = 2 int "y" "dy" + "c"`
⇒ `x/"y" = 2. "y"^2/2 + "c"`
⇒ `x/"y" = "y"^2 + "c"`
तो x = y3 + cy = y(y2 + c)
इसलिए, वाँछित हल x = y(y2 + c) है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`cos^2 x dy/dx + y = tan x (0 <= x < pi/2)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`(x + y) dy/dx = 1`
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`(1 + x^2) dy/dx + 2xy = 1/(1 + x^2); y = 0` यदि x = 1
अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।
निम्न में से कौन सा x और y में समघातीय फलन नहीं है।
जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।
y2dx + (x2 – xy + y2) dy = 0 का व्यापक हल ज्ञात कीजिए।
अवकल समीकरण dy = cosx(2 – y cosecx) dx को हल कीजिए, दिया है कि x = `pi/2` तब y = 2 है।
अवकल समीकरण (1 + y2) tan–1xdx + 2y(1 + x2) dy = 0 को हल कीजिए।
`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।
`("dy")/("d"x) = cos(x + "y") + sin(x + "y")` को हल कीजिए [संकेत : x + y = z रखिए]
अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।
`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है
tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?
`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0 का हल है
अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है
वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है
वह वक्र जिसके लिए किसी बिंदु पर स्पर्श रेखा की प्रवणता उस बिंदु के x-अक्ष (भुज) तथा y-अक्ष (कोटि) के अनुपात के बराबर है वह है
`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है
अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है
वक्र कुल y2 = 4a(x + a) का अवकल समीकरण है
अवकल समीकरण `("dy")/("d"x) + (2x"y")/(1 + x^2) = 1/(1 + x^2)^2` का हल है
अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।
`("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक ______ है।
`("d"x)/("dy") = "g"(x, "y")` जहाँ g (x, y) एक शून्य घात वाला समघातीय फलन है, प्रकार के अवकल समीकरण को हल करने के लिए सही प्रतिस्थापन x = vy है।
एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल
समीकरण `("d"^2x)/("dy"^2)` = 0 है।