मराठी

Ydydx(x+2y3) dydx = y का व्यापक हल ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`(x + 2"y"^3)  "dy"/"dx"` = y का व्यापक हल ज्ञात कीजिए।

बेरीज

उत्तर

दिया गया समीकरण `(x + 2"y"^3)  "dy"/"dx"` = y है।

⇒ `"dy"/"dx" = "y"/(x + 2"y"^3)`

⇒ `"dx"/"dy" = (x + 2"y"^3)/"y"`

⇒ `"dx"/"dy" = x/"y" + (2"y"^3)/"y"`

⇒ `"dx"/"dy" - x/"y"` = 2y3

यहाँ P = `- 1/"y"` और Q = 2y2.

∴ समाकलन गुणक I.F. = `"e"^(int"Pdy")`

= `"e"^(int 1/"y" "dy")`

= `"e"^(-log "y")`

= `"e"^(log 1/"y")`

= `1/"y"`.

तो समीकरण का हल है

x.I.F. = `int "Q"."I"."F".  "dy" + "c"`

`x . 1/"y" = int 2"y"^2 . 1/"y"  "dy" + "c"`

⇒ `x/"y" = 2 int "y"  "dy" + "c"`

⇒ `x/"y" = 2. "y"^2/2 + "c"`

⇒ `x/"y" = "y"^2 + "c"`

तो x = y3 + cy = y(y2 + c)

इसलिए, वाँछित हल x = y(y2 + c) है।

shaalaa.com
अवकल समीकरण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १८९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 9 अवकल समीकरण
प्रश्नावली | Q 10 | पृष्ठ १८९

संबंधित प्रश्‍न

निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

(x + y) dy + (x – y) dx = 0; y = 1; यदि x = 1


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + 3y = e^(- 2x)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`(x + y) dy/dx = 1`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`dy/dx + 2  y tan x = sin x`; y = 0 यदि x = `pi/4`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`dy/dx - 3 y cot x = sin 2x; y = 2` यदि x = `pi/2`


अवकल समीकरण `"dy"/"dx"` = yex,  x = 0, y = e में y का मान बताएं जब x = 1


एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए। 


अवकल समीकरण `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` की घात है


अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)`  के क्रमशः कोटि और घात हैं


दी गई त्रिज्या a के सभी वृत्तों के अवकल समीकरण की कोटि है


निम्न में से कौन सा x और y में समघातीय फलन नहीं है।


अवकल समीकरण tan x dx + tan y dy = 0 के विशिष्ट हल में स्वेच्छ अचरों की संख्या ______ है।


अवकल समीकरण  `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।


अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।


`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।


F(x, y) = `(x^2 + y^2)/(x - y)` कोटि 1 का समघातीय फलन है।


`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।


अवकल समीकरण dy = cosx(2 – y cosecx) dx को हल कीजिए, दिया है कि x = `pi/2` तब y = 2 है।


`(x"dy")/("d"x) - "y" = x^4 - 3x`  का समाकलन गुणक है:


tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?


अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है


समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है


`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है


`("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + "y"` = 0 का निम्त में से कौन सा व्यापक हल है


अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है


`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।


द्वितीय कोटि के अवकल समीकरण के विशिष्ट हल में स्वेच्छ अचरों की संख्या ं

दो होती है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×