Advertisements
Advertisements
प्रश्न
`(x + 2"y"^3) "dy"/"dx"` = y का व्यापक हल ज्ञात कीजिए।
उत्तर
दिया गया समीकरण `(x + 2"y"^3) "dy"/"dx"` = y है।
⇒ `"dy"/"dx" = "y"/(x + 2"y"^3)`
⇒ `"dx"/"dy" = (x + 2"y"^3)/"y"`
⇒ `"dx"/"dy" = x/"y" + (2"y"^3)/"y"`
⇒ `"dx"/"dy" - x/"y"` = 2y3
यहाँ P = `- 1/"y"` और Q = 2y2.
∴ समाकलन गुणक I.F. = `"e"^(int"Pdy")`
= `"e"^(int 1/"y" "dy")`
= `"e"^(-log "y")`
= `"e"^(log 1/"y")`
= `1/"y"`.
तो समीकरण का हल है
x.I.F. = `int "Q"."I"."F". "dy" + "c"`
`x . 1/"y" = int 2"y"^2 . 1/"y" "dy" + "c"`
⇒ `x/"y" = 2 int "y" "dy" + "c"`
⇒ `x/"y" = 2. "y"^2/2 + "c"`
⇒ `x/"y" = "y"^2 + "c"`
तो x = y3 + cy = y(y2 + c)
इसलिए, वाँछित हल x = y(y2 + c) है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
(x + y) dy + (x – y) dx = 0; y = 1; यदि x = 1
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + 3y = e^(- 2x)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`(x + y) dy/dx = 1`
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`dy/dx + 2 y tan x = sin x`; y = 0 यदि x = `pi/4`
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`dy/dx - 3 y cot x = sin 2x; y = 2` यदि x = `pi/2`
अवकल समीकरण `"dy"/"dx"` = yex, x = 0, y = e में y का मान बताएं जब x = 1
एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए।
अवकल समीकरण `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` की घात है
अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)` के क्रमशः कोटि और घात हैं
दी गई त्रिज्या a के सभी वृत्तों के अवकल समीकरण की कोटि है
निम्न में से कौन सा x और y में समघातीय फलन नहीं है।
अवकल समीकरण tan x dx + tan y dy = 0 के विशिष्ट हल में स्वेच्छ अचरों की संख्या ______ है।
अवकल समीकरण `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।
अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।
`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।
F(x, y) = `(x^2 + y^2)/(x - y)` कोटि 1 का समघातीय फलन है।
`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।
अवकल समीकरण dy = cosx(2 – y cosecx) dx को हल कीजिए, दिया है कि x = `pi/2` तब y = 2 है।
`(x"dy")/("d"x) - "y" = x^4 - 3x` का समाकलन गुणक है:
tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?
अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है
समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है
`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है
`("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + "y"` = 0 का निम्त में से कौन सा व्यापक हल है
अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है
`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।
द्वितीय कोटि के अवकल समीकरण के विशिष्ट हल में स्वेच्छ अचरों की संख्या ं
दो होती है।