Advertisements
Advertisements
प्रश्न
अवकल समीकरण dy = cosx(2 – y cosecx) dx को हल कीजिए, दिया है कि x = `pi/2` तब y = 2 है।
उत्तर
दिया गया अवकल समीकरण dy = cosx(2 – y cosecx) dx है।
⇒ `"dy"/"dx"` = cosx(2 – y cosec x)
⇒ `"dy"/"dx"` = 2cosx – ycosx . cosecx
⇒ `"dy"/"dx"` = 2cosx – ycotx
⇒ `"dy"/"dx" + "y" cot "x"` = 2cosx
यहाँ, P = cotx और Q = 2cosx
∴ समाकलन गुणक I.F. = `"e"^(int"Pdx")`
= `"e"^(int cot x"d"x)`
= `"e"^(log sinx)`
= sin x
∴ वाँछित हल `"y" xx "I"."F" = int "Q" xx "I"."F". "d"x + "c"` है।
⇒ `"y" . sin x = int 2 cos x . sin x "d"x + "c"`
⇒ `"y" . sin x = int sin 2x "d"x + "c"`
⇒ `"y" . sin x = - 1/2 cos 2x + "c"`
x = `pi/2` तथा y = 2 रखने पर हमें प्राप्त होता है
`2 sin pi/2 = - 1/2 cos pi + "c"`
⇒ 2(1) = `- 1/2 (-1) + "c"`
⇒ 2 = `1/2 + "c"`
⇒ c = `2 - 1/2 = 3/2`
∴ समीकरण y sin x = `- 1/2 cos 2x + 3/2` है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + y/x + x^2`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
(1 + x2)dy + 2xy dx = cot x dx (x ≠ 0)
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`dy/dx - 3 y cot x = sin 2x; y = 2` यदि x = `pi/2`
अवकल समीकरण `(1 - y^2) dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।
दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।
F(x, y) = `(x^2 + y^2)/(x - y)` कोटि 1 का समघातीय फलन है।
अवकल समीकरण `"dy"/"dx" - y` = cos x is ex का समाकलन गुणक ex है।
अवकल समीकरण `"y"^2 "dy"/"dx" + "y"^2 + 1` = 0 का एक हल x + y = tan–1y है।
अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।
अवकल समीकरण `"dy"/"dx" + 1` = ex + y को हल कीजिए।
ydx – xdy = x2 ydx को हल कीजिए।
उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।
उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।
अवकल समीकरण `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0 का व्यापक हल ज्ञात कीजिए।
`("dy")/("d"x) = cos(x + "y") + sin(x + "y")` को हल कीजिए [संकेत : x + y = z रखिए]
अवकल समीकरण `cosx ("dy")/("d"x) + "y"sinx` = 1 का समाकलन गुणक है।
y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है
`(x"dy")/("d"x) - "y" = x^4 - 3x` का समाकलन गुणक है:
`("dy")/("d"x) = ("y" + 1)/(x - 1)`, जब y (1) = 2 है के हलों की संख्या है।
tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?
वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है
अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है
`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।
अवकल समीकरण coty dx = xdy का हल ______ है।
वृत्तों के कुल x2 + (y – a)2 = a2 को निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।
वक्रों के कुल y = ex (Acosx + Bsinx) को निरूपित करने वाला अवकल समीकरण `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y"` = 0 है।
`x("dy")/("d"x) = "y" + x tan "y"/x` का हल `sin("y"/x)` = cx है।