मराठी

वक्रों के कुल y = ex (Acosx + Bsinx) को निरूपित करने वाला अवकल समीकरण dyddydyd2ydx2-2dydx+2y = 0 है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

वक्रों के कुल y = ex (Acosx + Bsinx)  को निरूपित करने वाला अवकल समीकरण `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y"` = 0  है।

पर्याय

  • सत्य

  • असत्य

MCQ
चूक किंवा बरोबर

उत्तर

यह कथन सत्य है।

व्याख्या:

दिया गया समीकरण y = ex (Acosx + Bsinx) 

दोनों पक्षों का अवकलन करने पर

`("dy")/("d"x)` = ex (–A sin x + B cos x) + (A cos x + B sin x) ex

`("dy")/("d"x)` = ex (–A sin x + B cos x) + y

पुन: दोनों पक्षों का x के सापेक्ष अवकलन करने पर

`("d"^2"y")/("d"x^2) = "e"^x (-"A" cosx - "B" sinx) + (-"A" sinx + "B"cosx) . "e"^x + ("dy")/("d"x)`

 `("d"^2"y")/("d"x^2) = "e"^x ("A" cos x + "B" sin x) + ("dy")/("d"x) - "y" + ("dy")/("d"x)`

`("d"^2"y")/("d"x^2) = - "y" + "y" + 2("dy")/("d"x)`

∴ `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y"` = 0

shaalaa.com
अवकल समीकरण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १९८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 9 अवकल समीकरण
प्रश्नावली | Q 77. (viii) | पृष्ठ १९८

संबंधित प्रश्‍न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

(1 + x2)dy + 2xy dx = cot x dx (x ≠ 0)


अवकल समीकरण x`dy/dx - y = 2x^2` का समाकलन गुणक है:


एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए। 


अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है


निम्न में से कौन सा x और y में समघातीय फलन नहीं है।


अवकल समीकरण `x "dt"/"dx" + 2"y"` = x2 का हल है


`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।


एक तल में सभी रेखाएँ जो ऊर्ध्वाधर नहीं हैं के लिए अवकल समीकरण ज्ञात कीजिए।


अवकल समीकरण `"dy"/"dx" + 2x"y"` = y को हल कीजिए।


अवकल समीकरण  `"dy"/"dx"` = 1 + x + y2 + xy2,  को हल कीजिए जब y = 0, x = 0


`(x + 2"y"^3)  "dy"/"dx"` = y का व्यापक हल ज्ञात कीजिए।


उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।


अवकल समीकरण dy = cosx(2 – y cosecx) dx को हल कीजिए, दिया है कि x = `pi/2` तब y = 2 है।


केंद्र (1, 2) वाले सभी सकेंद्री वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।


मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।


y = Acos αx + Bsin αx जहाँ A और B स्वेछ अचर हैं के लिए अवकल समीकरण है


अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।


y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है


निम्न से कौन सा अवकल समीकरण कोटि 2 का है?


`x ("dy")/("d"x) + "y"` = ex का हल है


वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है


`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है


`("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + "y"` = 0 का निम्त में से कौन सा व्यापक हल है


`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है


अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है


अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।


`("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक ______ है।


द्वितीय कोटि के अवकल समीकरण के विशिष्ट हल में स्वेच्छ अचरों की संख्या ं

दो होती है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×