मराठी

Dyddydyd2ydx2-2dydx+y = 0 का निम्त में से कौन सा व्यापक हल है - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + "y"` = 0 का निम्त में से कौन सा व्यापक हल है

पर्याय

  • y = (Ax + B)ex

  • y = (Ax + B)e–x

  • y = Aex + Be–x

  • y = Acosx + Bsinx

MCQ

उत्तर

सही उत्तर y = (Ax + B)ex है।

व्याख्या:

दिया गया अवकल समीकरण `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + "y"` = 0 है।

क्योंकि उपरोक्त समीकरण द्वितीय कोटि और प्रथम घात का है

∴ `"D"^2"y" - 2"Dy" + "y"` = 0

जहाँ D = `"d"/("d"x)`

⇒ `("D"^2 - 2"D" + 1)"y"` = 0

∴ सहायक समीकरण m2 – 2m + 1 = 0 है।

⇒ (m – 1)2 = 0

⇒ m = 1, 1

यदि सहायक समीकरण के मूल वास्तविक और समान हैं, तो मान लीजिए (m)

तब CF = `("c"_1 + "c"_2) . "e"^("m"x)`

∴ CF = `("A"x + "B")"e"^x`

तो y = `("A"x + "B")."e"^x`

shaalaa.com
अवकल समीकरण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १९६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 9 अवकल समीकरण
प्रश्नावली | Q 70 | पृष्ठ १९६

संबंधित प्रश्‍न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`xdy/dx + 2y = x^2 log x`


अवकल समीकरण `"dy"/"dx"` = yex,  x = 0, y = e में y का मान बताएं जब x = 1


एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए। 


उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता `"y" + "y"/x` है।


अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)`  के क्रमशः कोटि और घात हैं


दी गई त्रिज्या a के सभी वृत्तों के अवकल समीकरण की कोटि है


अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है


अवकल समीकरण `x "dt"/"dx" + 2"y"` = x2 का हल है


अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।


दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।


अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।


ydx – xdy = x2 ydx को हल कीजिए।


उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।


(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।


`x ("dy")/("d"x) = "y" (log "y" – log x + 1)` को हल कीजिए।


अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है


y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है


`(x"dy")/("d"x) - "y" = x^4 - 3x`  का समाकलन गुणक है:


निम्न से कौन सा अवकल समीकरण कोटि 2 का है?


tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?


अवकल समीकरण `"y" ("dy")/("d"x) + "c"` निरूपित करता है


ex cosy dx – ex siny dy = 0 का व्यापक हल है


अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^3 + 6"y"^5` = 0 की घात है


अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है


अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है


वक्र कुल  y2 = 4a(x + a) का अवकल समीकरण है


अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है


अवकल समीकरण coty dx = xdy का हल ______ है।


`("d"x)/("dy") + "p"_1x = "Q"_1` प्रकार के अवकल समीकरण के हल को x.I.F. = `("I"."F") xx "Q"_1"dy"` द्वारा दिया जाता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×