Advertisements
Advertisements
प्रश्न
अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है
पर्याय
(y + 1) = k(ex + 1)
y + 1 = ex + 1 + k
y = log {k(y + 1)(ex + 1)}
y = `log{("e"^x + 1)/("y" + 1)} + "k"`
उत्तर
सही उत्तर y = log {k(y + 1)(ex + 1)} है।
व्याख्या:
दिया गया अवकल समीकरण (ex + 1) ydy = (y + 1) exdx है।
⇒ `"y"/("y" + 1) "dy" = "e"^x/("e"^x + 1) "d"x`
दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है
`int "y"/("y" + 1) "dy" = int "e"^x/("e"^x + 1)"d"x`
⇒ `int ("y" + 1 - 1)/("y" + 1) "dy" = int "e"^x/("e"^x + 1) "d"x`
⇒ `int 1. "dy" - int 1/("y" + 1) "dy" = int "e"^x/("e"^x + 1) "d"x`
⇒ `"y" - log|"y" + 1| = log|"e"^x + 1| + log"k"`
⇒ y = `log|"y" + 1| + log|"e"^x + 1| + log "k"`
⇒ y = `log|"k"("y" + 1)("e"^x + 1)|`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`xdy/dx + 2y = x^2 log x`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`(x + 3y^2) dy/dx = y, (y > 0)`
अवकल समीकरण x`dy/dx - y = 2x^2` का समाकलन गुणक है:
अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।
बिंदु 1,`pi/4` से जाने वाले वक् का समीकरण ज्ञात कीजिए यदि किसी बिंदु P (x, y) पर वक्र की स्पर्श रेखा की प्रवणता `"y"/x - cos^2"y"/x` है।
बताइए कि समीकरण xdy – ydx = `sqrt(x^2 + "y"^2) "d"x` किस प्रकार का अवकल समीकरण है तथा इसे हल कीजिए।
अवकल समीकरण `2x * "dy"/"dx" y` = 3 का हल किस कुल को निरूपित करता है?
निम्न में से कौन सा x और y में समघातीय फलन नहीं है।
एक तल में सभी रेखाएँ जो ऊर्ध्वाधर नहीं हैं के लिए अवकल समीकरण ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx" + 1` = ex + y को हल कीजिए।
अवकल समीकरण `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0 का व्यापक हल ज्ञात कीजिए।
(x + y) (dx – dy) = dx + dy को हल कीजिए। [संकेत : dx और dy को पृथक करने के पश्चात x + y = z रखिए ]
Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए।
`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।
बिंदु (2, 1) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसका किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `(x^2 + "y"^2)/(2x"y")` है।
बिंदु (1, 1) से गुजरने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु P (x, y) से खींची गई स्पर्श रेखा, निर्देशांक अक्षों से A और B पर इस प्रकार मिलती है कि AB का मध्य बिंदु P है।
`x ("dy")/("d"x) = "y" (log "y" – log x + 1)` को हल कीजिए।
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^(1/4) + x^(1/5)` = 0, के कोटि और घात क्रमश: हैं
अवकल समीकरण `cosx ("dy")/("d"x) + "y"sinx` = 1 का समाकलन गुणक है।
अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है
अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है
वक्र कुल y2 = 4a(x + a) का अवकल समीकरण है
`("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + "y"` = 0 का निम्त में से कौन सा व्यापक हल है
`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है
`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।
`("d"x)/("dy") + "p"_1x = "Q"_1` प्रकार के अवकल समीकरण के हल को x.I.F. = `("I"."F") xx "Q"_1"dy"` द्वारा दिया जाता है।
`("dy")/("d"x) = ("y"/x)^(1/3)` का हल `"y"^(2/3) - x^(2/3)` = c है।
अवकल समीकरण `("dy")/("d"x) = (x + 2"y")/x` का हल x + y = kx2 है।
`x("dy")/("d"x) = "y" + x tan "y"/x` का हल `sin("y"/x)` = cx है।