Advertisements
Advertisements
प्रश्न
बिंदु (2, 1) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसका किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `(x^2 + "y"^2)/(2x"y")` है।
उत्तर
यह देखते हुए कि (x, y) पर एक वक्र के स्पर्शरेखा का ढलान `("dy")/("d"x) = (x^2 + "y"^2)/(2x"y")` है
यह एक समघातीय अवकल समीकरण है
तो, y = vx रखिए
⇒ `("dy")/("d"x) = "v" + x * "dv"/"dx"`
`"v" + x * "dv"/"dx" = (x^2 + "v"^2x^2)/(2x * "v"x)`
⇒ `"v" + x * "dv"/"dx" = (1 + "v"^2)/(2"v")`
⇒ `x * "dv"/"dx" = (1 + "v"^2)/(2"v") - "v"`
⇒ `x * "dv"/"dx" = (1 + "v"^2 - 2"v"^2)/(2"v")`
⇒ `x * "dv"/"dx" = (1 - "v"^2)/(2"v")`
⇒ `(2"v")/(1 - "v"^2) "dv" = ("d"x)/x`
दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है
`int (2"v")/(1 - "v"^2) "dv" = int ("d"x)/x`
⇒ `-log|1 - "v"^2| = log x + log "c"`
⇒ `-log|1 - "y"^2/x^2| = logx + log"c"`
⇒ `-log|(x^2 - "y"^2)/x| = logx + log"c"`
⇒ `log|x^2/(x^2 - "y"^2)| = log|x"c"|`
⇒ `x^2/(x^2 - "y"^2)` = xc
क्योंकि वक्र बिंदु (2, 1) से होकर जा रहा है।
∴ `(2)^2/((2)^2 - (1)^2` = 2c
⇒ `4/3` = 2c
⇒ c = `2/3`
इसलिए, वाँछित समीकरण `x^2/(x^2 - "y"^2) = 2/3 x`
⇒ 2(x2 – y2) = 3x है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
(x + y) dy + (x – y) dx = 0; y = 1; यदि x = 1
अवकल समीकरण x`dy/dx - y = 2x^2` का समाकलन गुणक है:
एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है
अवकल समीकरण `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 की घात ______ हैं।
अवकल समीकरण `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` को हल करने के लिए उपयुक्त प्रतिस्थापन ______ है।
जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।
F(x, y) = `(x^2 + y^2)/(x - y)` कोटि 1 का समघातीय फलन है।
अवकल समीकरण `"y"^2 "dy"/"dx" + "y"^2 + 1` = 0 का एक हल x + y = tan–1y है।
अवकल समीकरण `("d"^2"y")/("d"x^2) - x^2 "dy"/"dx" + x"y"` = x का एक विशिष्ट हल y = x है।
`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।
यदि y (x) समीकरण `((2 + sinx)/(1 + "y"))"dy"/"dx"` = – cosx का हल है और y (0) = 1, है तब `"y"(pi/2)` का मान ज्ञात कीजिए।
उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।
Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए।
केंद्र (1, 2) वाले सभी सकेंद्री वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।
बिंदु (1, 0) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `("y" - 1)/(x^2 + x)` है।
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^(1/4) + x^(1/5)` = 0, के कोटि और घात क्रमश: हैं
अवकल समीकरण `(1 - x^2) ("dy")/("d"x) - x"y"` = 1 का समाकलन गुणक है
tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?
अवकल समीकरण `"y" ("dy")/("d"x) + "c"` निरूपित करता है
ex cosy dx – ex siny dy = 0 का व्यापक हल है
`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0 का हल है
अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है
`x ("dy")/("d"x) + "y"` = ex का हल है
वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है
`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है
अवकल समीकरण `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"` का हल है
`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।