English

बिंदु (2, 1) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसका किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता yyx2+y22xy है। - Mathematics (गणित)

Advertisements
Advertisements

Question

बिंदु (2, 1) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसका किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता  `(x^2 + "y"^2)/(2x"y")` है।

Sum

Solution

यह देखते हुए कि (x, y) पर एक वक्र के स्पर्शरेखा का ढलान `("dy")/("d"x) = (x^2 + "y"^2)/(2x"y")`  है

यह एक समघातीय अवकल समीकरण है

तो,  y = vx रखिए

⇒ `("dy")/("d"x) = "v" + x * "dv"/"dx"`

`"v" + x * "dv"/"dx" = (x^2 + "v"^2x^2)/(2x * "v"x)`

⇒ `"v" + x * "dv"/"dx" = (1 + "v"^2)/(2"v")`

⇒ `x * "dv"/"dx" = (1 + "v"^2)/(2"v") - "v"`

⇒ `x * "dv"/"dx" = (1 + "v"^2 - 2"v"^2)/(2"v")`

⇒ `x * "dv"/"dx" = (1 - "v"^2)/(2"v")`

⇒ `(2"v")/(1 - "v"^2) "dv" = ("d"x)/x`

दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है

`int (2"v")/(1 - "v"^2) "dv" = int ("d"x)/x`

⇒ `-log|1 - "v"^2| = log x + log "c"`

⇒ `-log|1 - "y"^2/x^2| = logx + log"c"`

⇒ `-log|(x^2 - "y"^2)/x| = logx + log"c"`

⇒ `log|x^2/(x^2 - "y"^2)| = log|x"c"|`

⇒ `x^2/(x^2 - "y"^2)` = xc

क्योंकि वक्र बिंदु (2, 1) से होकर जा रहा है।

∴ `(2)^2/((2)^2 - (1)^2` = 2c

⇒ `4/3` = 2c

⇒ c = `2/3`

इसलिए, वाँछित समीकरण `x^2/(x^2 - "y"^2) = 2/3 x`

⇒ 2(x2 – y2) = 3x है।

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - प्रश्नावली [Page 190]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 9 अवकल समीकरण
प्रश्नावली | Q 29 | Page 190

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`cos^2 x dy/dx + y = tan x (0 <= x < pi/2)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`(x + 3y^2) dy/dx = y, (y > 0)`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`dy/dx + 2  y tan x = sin x`; y = 0 यदि x = `pi/4`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`(1 + x^2) dy/dx + 2xy = 1/(1 + x^2); y = 0` यदि x = 1


अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।


उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता `"y" + "y"/x` है।


बिंदु 1,`pi/4` से जाने वाले वक् का समीकरण ज्ञात कीजिए यदि किसी बिंदु P (x, y) पर वक्र की स्पर्श रेखा की प्रवणता `"y"/x - cos^2"y"/x` है।


बताइए कि समीकरण xdy – ydx = `sqrt(x^2 + "y"^2)  "d"x` किस प्रकार का अवकल समीकरण है तथा इसे हल कीजिए। 


अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है


जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।


`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।


अवकल समीकरण `"dy"/"dx" + 1` = ex + y को हल कीजिए।


ydx – xdy = x2 ydx को हल कीजिए।


वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं।


`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।


केंद्र (1, 2) वाले सभी सकेंद्री वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।


`("dy")/("d"x) = cos(x + "y") + sin(x + "y")` को हल कीजिए [संकेत : x + y = z रखिए]


बिंदु (1, 0) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `("y" - 1)/(x^2 + x)` है।


बिंदु (1, 1) से गुजरने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु P (x, y) से खींची गई स्पर्श रेखा, निर्देशांक अक्षों से A और B पर इस प्रकार मिलती है कि AB का मध्य बिंदु P है।


y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है


`(x"dy")/("d"x) - "y" = x^4 - 3x`  का समाकलन गुणक है:


`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है


अवकल समीकरण  `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है


वक्र कुल  y2 = 4a(x + a) का अवकल समीकरण है


`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है


अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है


अवकल समीकरण coty dx = xdy का हल ______ है।


`("d"x)/("dy") = "g"(x, "y")` जहाँ g (x, y) एक शून्य घात वाला समघातीय फलन है, प्रकार के अवकल समीकरण को हल करने के लिए सही प्रतिस्थापन x = vy है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×