English

Dydydydx-3y=sin2x का व्यापक हल ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

`("dy")/("d"x) -3"y" = sin2x` का व्यापक हल ज्ञात कीजिए।

Sum

Solution

दिया गया समीकरण `("dy")/("d"x) -3"y" = sin2x` है।

यहाँ, P = –3 और Q = sin2x

∴ समाकलन गुणक I.F. = `"e"^(int "Pdx")`

= `"e"^(int-3"d"x)`

= `"e"^(-3x)`

∴ हल `"y" xx "I"."F". = int "Q" . "I"."F". "d"x + "c"` है।

⇒ `"y" . "e"^(-3x) = int sin2x . "e"^(-3x) "d"x + "c"`

मान लीजिए I = `int sin_"I" 2x . "e"_"II"^(-3x) "d"x`

⇒ I = `sin 2x . int "e"^(-3x)"d"x - int("D"(sin 2x) . int"e"^(-3x) "d"x)"d"x`

⇒ I = `sin 2x . "e"^(-3x)/(-3) - int 2 cos2x . "e"^(-3x)/(-3) "d"x`

⇒ I = `"e"^(-3x)/(-3) sin2x + 2/3 int cos_"I" 2x . "e"_"II"^(-3x) "d"x`

⇒ I = `"e"^(-3x)/(-3) sin 2x + 2/3 [cos 2x . int "e"^(-3x) "d"x - int["D" cos2x . int "e"^(-3x) "d"x]"d"x]`

⇒ I = `"e"^(-3x)/(-3) sin 2x + 2/3 [cos 2x . "e"^(-3x)/(-3) - 2sin 2x . "e"^(-3x)/(-3)]"d"x`

⇒ I = `"e"^(-3x)/(-3) sin 2x - 2/9 cos2x . "e"^(-3x) - 4/9 int sin 2x. "e"^(-3x) "d"x`

⇒ `"e"^(-3x)/(-3) sin2x - 2/9 "e"^(-3x) cos 2x - 4/9 "I"`

⇒ `"I" + 4/9 "I" = "e"^(-3x)/(-3) sin 2x - 2/9 "e"^(-3x) cos 2x`

⇒ `13/9 "I" = - 1/9 [3"e"^(-3x) sin2x + 2"e"^(-3x) cos2x]`

⇒ I = `- 1/13 "e"^(-3x) [3 sin 2x + 2 cos2x]`

∴ समीकरण `"y"  "e"^(-3x) = - 1/13 "e"^(-3x) [3 sin 2x + 2 cos 2x] + "c"` हो जाता है।

∴ y = `- 1/13 [3 sin 2x + 2 cos 2x] + "c" . "e"^(3x)`

इसलिए, वाँछित हल y = `-[(3sin2x + 2cos2x)/13] + "c" . "e"^(3x)` है।

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - प्रश्नावली [Page 190]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 9 अवकल समीकरण
प्रश्नावली | Q 28 | Page 190

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

(x + y) dy + (x – y) dx = 0; y = 1; यदि x = 1


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x log x dy/dx + y = 2/x log x`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`(1 + x^2) dy/dx + 2xy = 1/(1 + x^2); y = 0` यदि x = 1


अवकल समीकरण x`dy/dx - y = 2x^2` का समाकलन गुणक है:


अवकल समीकरण `(1 - y^2)  dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:


बिंदु 1,`pi/4` से जाने वाले वक् का समीकरण ज्ञात कीजिए यदि किसी बिंदु P (x, y) पर वक्र की स्पर्श रेखा की प्रवणता `"y"/x - cos^2"y"/x` है।


`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।


अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)`  के क्रमशः कोटि और घात हैं


अवकल समीकरण `2x * "dy"/"dx" y` = 3 का हल किस कुल को निरूपित करता है?


अवकल समीकरण `x "dt"/"dx" + 2"y"` = x2 का हल है


अवकल समीकरण `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 की घात ______ हैं।


अवकल समीकरण tan x dx + tan y dy = 0 के विशिष्ट हल में स्वेच्छ अचरों की संख्या ______ है।


अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।


अवकल समीकरण `"dy"/"dx" - y` = cos x is ex का समाकलन गुणक ex है।


अवकल समीकरण `("d"^2"y")/("d"x^2) - x^2 "dy"/"dx" + x"y"` = x का एक विशिष्ट हल y = x है।


`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।


एक तल में सभी रेखाएँ जो ऊर्ध्वाधर नहीं हैं के लिए अवकल समीकरण ज्ञात कीजिए।


दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।


अवकल समीकरण  `"dy"/"dx"` = 1 + x + y2 + xy2,  को हल कीजिए जब y = 0, x = 0


`(x + 2"y"^3)  "dy"/"dx"` = y का व्यापक हल ज्ञात कीजिए।


अवकल समीकरण `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0 का व्यापक हल ज्ञात कीजिए।


मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।


यदि y = e–x (Acosx + Bsinx) तब y एक हल है


y = Acos αx + Bsin αx जहाँ A और B स्वेछ अचर हैं के लिए अवकल समीकरण है


`(x"dy")/("d"x) - "y" = x^4 - 3x`  का समाकलन गुणक है:


वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है


अवकल समीकरण  `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है


अवकल समीकरण `(("d"^3"y")/("d"x^3))^2 - 3 ("d"^2"y")/("d"x^2) + 2(("dy")/("d"x))^4` = y4 की कोटि तथा घात क्रमश: है


अवकल समीकरण `("dy")/("d"x) + (2x"y")/(1 + x^2) = 1/(1 + x^2)^2` का हल है


`x("dy")/("d"x) = "y" + x tan  "y"/x` का हल `sin("y"/x)` = cx है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×