Advertisements
Advertisements
Question
अवकल समीकरण `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0 का व्यापक हल ज्ञात कीजिए।
Solution
दिया गया समीकरण `(1 + "y"^2) + (x - "e"^(tan^(-1) "y")) "dy"/"dx"` = 0 है।
⇒ `(x - "e"^(tan^-1"y")) "dy"/"dx" = -(1 + "y"^2)`
⇒ `"dy"/"dx" = (-(1 + "y"^2))/(x - "e"^(tan^-1 "y"))`
⇒ `"dx"/"dy" = (x - "e"^(tan^-1"y"))/(-(1 + "y"^2))`
⇒ `"dx"/"dy" = - x/((1 + "y"^2)) + ("e"^(tan^-1"y"))/(1 + "y"^2)`
⇒ `"dx"/"dy" + x/((1 + "y"^2)) = ("e"^(tan^-1 "y"))/(1 + "y"^2)`
यहाँ, P = `1/(1 + "y"^2)` तथा Q = `("e"^(tan^-1 "y"))/(1 + "y"^2)`
∴ समाकलन गुणक I.F. = `"e"^(int "Pdy")`
= `"e"^(int 1/(1 + "y"^2) "dy")`
= `"e"^(tan^-1 "y")`
∴ हल `x . "I"."F". = int "Q". "I"."F". "dy" + "c"` है।
⇒ `x . "e"^(tan^-1 "y") = int ("e"^(tan^-1 "y"))/(1 + "y"^2) * "e"^(tan^-1 "y") "dy" + "c"`
`"e"^(tan^-1 "y")` = t रखिए
∴ `"e"^(tan^-1 "y") * 1/(1 + "y"^2) "dy"` = dt
∴ `x . "e"^(tan^-1 "y") = int "t" . "dt" + "c"`
⇒ `x . "e"^(tan^-1 "y") = 1/2 "t"^2 + "c"`
⇒ `x . "e"^(tan^-1 "y") = 1/2 ("e"^(tan^-1 "y"))^2 + "c"`
⇒ x = `1/2 ("e"^(tan^-1 "y")) + "c"/("e"^(tan^-1 "y"))`
⇒ 2x = `"e"^(tan^-1 "y") + (2"c")/("e"^(tan^-1 "y")`
⇒ `2x . "e"^(tan^-1 "y") = ("e"^(tan^-1"y"))^2 + 2"c"`
इसलिए, यह वाँछित सामान्य हल है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + 3y = e^(- 2x)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`cos^2 x dy/dx + y = tan x (0 <= x < pi/2)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
y dx + (x – y2)dy = 0
अवकल समीकरण `(1 - y^2) dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:
`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।
अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है
अवकल समीकरण `x "dt"/"dx" + 2"y"` = x2 का हल है
अवकल समीकरण `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 की घात ______ हैं।
दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।
अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।
अवकल समीकरण x(1 + y2)dx + y(1 + x2)dy = 0 का व्यापक हल (1 + x2)(1 + y2) = k है।
यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`
`("dy")/("d"x) -3"y" = sin2x` का व्यापक हल ज्ञात कीजिए।
यदि y = e–x (Acosx + Bsinx) तब y एक हल है
y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है
वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है
`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है
समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है
`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है
अवकल समीकरण `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"` का हल है
अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।
`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।
`("d"x)/("d"x) + "P"_1x = "Q"_1` प्रकार के अवकल समीकरण का व्यापक हल ______ है।
`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।
`("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक ______ है।
द्वितीय कोटि के अवकल समीकरण के विशिष्ट हल में स्वेच्छ अचरों की संख्या ं
दो होती है।
एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल
समीकरण `("d"^2x)/("dy"^2)` = 0 है।