English

अवकल समीकरण dddydxddd2ydx2+3(dydx)2=x2log(d2ydx2) की घात है - Mathematics (गणित)

Advertisements
Advertisements

Question

अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है

Options

  • 1

  • 2

  • 3

  • परिभाषित नहीं है।

MCQ

Solution

सही उत्तर परिभाषित नहीं है। 

व्याख्या:

दिया गया अवकल समीकरण अवकलनजों में बहुपद समीकरण नहीं है। इसलिए इसकी घात परिभाषित नहीं है।

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - हल किये हुए उदाहरण [Page 183]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 9 अवकल समीकरण
हल किये हुए उदाहरण | Q 13 | Page 183

RELATED QUESTIONS

एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए। 


बिंदु 1,`pi/4` से जाने वाले वक् का समीकरण ज्ञात कीजिए यदि किसी बिंदु P (x, y) पर वक्र की स्पर्श रेखा की प्रवणता `"y"/x - cos^2"y"/x` है।


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।


अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।


`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।


अवकल समीकरण  x(1 + y2)dx + y(1 + x2)dy = 0 का व्यापक हल (1 + x2)(1 + y2) = k है।


अवकल समीकरण `"y"^2 "dy"/"dx" + "y"^2 + 1` = 0 का एक हल x + y = tan–1y है।


एक तल में सभी रेखाएँ जो ऊर्ध्वाधर नहीं हैं के लिए अवकल समीकरण ज्ञात कीजिए।


अवकल समीकरण `"dy"/"dx" + 2x"y"` = y को हल कीजिए।


अवकल समीकरण `"dy"/"dx" + 1` = ex + y को हल कीजिए।


ydx – xdy = x2 ydx को हल कीजिए।


`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।


`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।


अवकल समीकरण `(("d"^2"y")/("d"x^2))^2 + (("dy")/("d"x))^2 = xsin(("dy")/("d"x))` की घात है


अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^(1/4) + x^(1/5)` = 0, के कोटि और घात क्रमश: हैं


अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______


अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।


अवकल समीकरण `"y" ("dy")/("d"x) + "c"` निरूपित करता है


ex cosy dx – ex siny dy = 0 का व्यापक हल है


समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है


`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।


अवकल समीकरण coty dx = xdy का हल ______ है।


अवकल समीकरण `("d"x)/("dy") + "P"_1x = "Q"_1` के समाकलन गुणक को `"e"^(int "P"_1"dy")` से लिखा जाता है।


`("d"x)/("dy") = "g"(x, "y")` जहाँ g (x, y) एक शून्य घात वाला समघातीय फलन है, प्रकार के अवकल समीकरण को हल करने के लिए सही प्रतिस्थापन x = vy है।


वृत्तों के कुल x2 + (y – a)2 = aको निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।


वक्रों के कुल y = ex (Acosx + Bsinx)  को निरूपित करने वाला अवकल समीकरण `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y"` = 0  है।


अवकल समीकरण `("dy")/("d"x) = (x + 2"y")/x` का हल x + y = kx2 है।


एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल

समीकरण `("d"^2x)/("dy"^2)` = 0 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×