English

Dydxx2dydx = x2 + xy + y2 को हल कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।

Sum

Solution

दिया गया समीकरण `x^2 "dy"/"dx"` = x2 + xy + y2 है।

⇒ `"dy"/"dx" = (x^2 + x"y" + "y"^2)/x^2`

y = vx  रखें ......[∵ यह एक समघातीय अवकल समीकरण है]

∴ `"dy"/"dx" = "v" + x * "dv"/"dx"`

∴ `"v" + x * "dv"/"dx" = (x^2 + "v"x^2 + "v"^2x^2)/x^2`

⇒ `"v" + x * "dv"/"dx" = (x^2(1 + "v" + "v"^2))/x^2` 

⇒ `"v" + x * "dv"/"dx" = 1 + "v" + "v"^2`

⇒ `x * "dv"/"dx" = 1 + "v" + "v"^2 -  "v"`

⇒ `x * "dv"/"dx" = 1 + "v"^2`

⇒ `"dv"/(1 + "v"^2) = "dx"/x`

दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है

`int "dv"/(1 + "v"^2) = int "dx"/x`

⇒ tan–1v = log x + c

⇒ `tan^-1 ("y"/x)` = log x + c

अत: वाँछित हल `tan^-1 ("y"/x)` = log |x| + c है।

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - प्रश्नावली [Page 189]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 9 अवकल समीकरण
प्रश्नावली | Q 16 | Page 189

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + y/x + x^2`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`xdy/dx + 2y = x^2 log x`


अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।


अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है


अवकल समीकरण tan x dx + tan y dy = 0 के विशिष्ट हल में स्वेच्छ अचरों की संख्या ______ है।


अवकल समीकरण `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` को हल करने के लिए उपयुक्त प्रतिस्थापन ______ है।


दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।


अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।


अवकल समीकरण  x(1 + y2)dx + y(1 + x2)dy = 0 का व्यापक हल (1 + x2)(1 + y2) = k है।


अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।


दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।


`(x + 2"y"^3)  "dy"/"dx"` = y का व्यापक हल ज्ञात कीजिए।


वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं।


`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।


`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।


`x ("dy")/("d"x) = "y" (log "y" – log x + 1)` को हल कीजिए।


यदि y = e–x (Acosx + Bsinx) तब y एक हल है


अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।


अवकल समीकरण `"y" ("dy")/("d"x) + "c"` निरूपित करता है


`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है


अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है


`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है


अवकल समीकरण  `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"` का हल है


`("d"x)/("d"x) + "P"_1x = "Q"_1` प्रकार के अवकल समीकरण का व्यापक हल ______ है।


`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।


`("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक ______ है।


`("d"x)/("dy") + "p"_1x = "Q"_1` प्रकार के अवकल समीकरण के हल को x.I.F. = `("I"."F") xx "Q"_1"dy"` द्वारा दिया जाता है।


द्वितीय कोटि के अवकल समीकरण के विशिष्ट हल में स्वेच्छ अचरों की संख्या ं

दो होती है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×