Advertisements
Advertisements
Question
`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।
Solution
दिया गया समीकरण `x^2 "dy"/"dx"` = x2 + xy + y2 है।
⇒ `"dy"/"dx" = (x^2 + x"y" + "y"^2)/x^2`
y = vx रखें ......[∵ यह एक समघातीय अवकल समीकरण है]
∴ `"dy"/"dx" = "v" + x * "dv"/"dx"`
∴ `"v" + x * "dv"/"dx" = (x^2 + "v"x^2 + "v"^2x^2)/x^2`
⇒ `"v" + x * "dv"/"dx" = (x^2(1 + "v" + "v"^2))/x^2`
⇒ `"v" + x * "dv"/"dx" = 1 + "v" + "v"^2`
⇒ `x * "dv"/"dx" = 1 + "v" + "v"^2 - "v"`
⇒ `x * "dv"/"dx" = 1 + "v"^2`
⇒ `"dv"/(1 + "v"^2) = "dx"/x`
दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है
`int "dv"/(1 + "v"^2) = int "dx"/x`
⇒ tan–1v = log x + c
⇒ `tan^-1 ("y"/x)` = log x + c
अत: वाँछित हल `tan^-1 ("y"/x)` = log |x| + c है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + y/x + x^2`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`xdy/dx + 2y = x^2 log x`
अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।
अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है
अवकल समीकरण tan x dx + tan y dy = 0 के विशिष्ट हल में स्वेच्छ अचरों की संख्या ______ है।
अवकल समीकरण `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` को हल करने के लिए उपयुक्त प्रतिस्थापन ______ है।
दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।
अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।
अवकल समीकरण x(1 + y2)dx + y(1 + x2)dy = 0 का व्यापक हल (1 + x2)(1 + y2) = k है।
अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।
दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।
`(x + 2"y"^3) "dy"/"dx"` = y का व्यापक हल ज्ञात कीजिए।
वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं।
`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।
`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।
`x ("dy")/("d"x) = "y" (log "y" – log x + 1)` को हल कीजिए।
यदि y = e–x (Acosx + Bsinx) तब y एक हल है
अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।
अवकल समीकरण `"y" ("dy")/("d"x) + "c"` निरूपित करता है
`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है
अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है
`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है
अवकल समीकरण `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"` का हल है
`("d"x)/("d"x) + "P"_1x = "Q"_1` प्रकार के अवकल समीकरण का व्यापक हल ______ है।
`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।
`("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक ______ है।
`("d"x)/("dy") + "p"_1x = "Q"_1` प्रकार के अवकल समीकरण के हल को x.I.F. = `("I"."F") xx "Q"_1"dy"` द्वारा दिया जाता है।
द्वितीय कोटि के अवकल समीकरण के विशिष्ट हल में स्वेच्छ अचरों की संख्या ं
दो होती है।