English

उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण dydxy(1+x2)dydx+2xy = 4x2 को संतुष्ट करता है। - Mathematics (गणित)

Advertisements
Advertisements

Question

उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।

Sum

Solution

दिया गया समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 है।

⇒ `"dy"/"dx" + (2x)/(1 + x^2) * "y" = (4x^2)/(1 + x^2)`

यहाँ, P = `(2x)/(1 + x^2)` और Q = `(4x^2)/(1 + x^2)`

समाकलन गुणक I.F. = `"e"^(int "Pdx")`

= `"e"^(int (2x)/(1 + x^2) "dx")`

= `"e"^(log(1 + x^2)`

= 1 + x2

∴ हल `"y" xx "I"."F". = int "Q" xx "I"."F".  "d"x + "c"` है।

⇒ `"y"(1 + x^2) = int (4x^2)/(1 + x^2) xx (1 + x^2) "d"x + "c"`

⇒ `"y"(1 + x^2) = int 4x^2 "d"x + "c"`

⇒ `"y"(1 + x^2) = 4/3 x^3 + "c"`  ......(i)

क्योंकि वक्र मूल बिन्दु से होकर जा रहा है अर्थात (0, 0)

∴ समीकरण (i) में y = 0 और x = 0 रखें।

0(1 + 0) = `4/3(0)^3 + "c"`

⇒ C = 0

∴ समीकरण `"y"(1 + x^2) = 4/3 x^3` है।

⇒ y = `(4x^3)/(3(1 + x^2))`

अत: वाँछित हल y =  `(4x^3)/(3(1 + x^2))`.

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - प्रश्नावली [Page 189]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 9 अवकल समीकरण
प्रश्नावली | Q 15 | Page 189

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + 3y = e^(- 2x)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`cos^2 x dy/dx + y = tan x (0 <= x < pi/2)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`xdy/dx + 2y = x^2 log x`


वक्रों के कुल y = Ae2x + B.e–2x के लिए अवकल समीकरण ज्ञात कीजिए।


अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।


मूल बिंदु से गुजरने वाली सरल रेखाओं के कुल का अवकल समीकरण ज्ञात कीजिए।


बिंदु 1,`pi/4` से जाने वाले वक् का समीकरण ज्ञात कीजिए यदि किसी बिंदु P (x, y) पर वक्र की स्पर्श रेखा की प्रवणता `"y"/x - cos^2"y"/x` है।


बताइए कि समीकरण xdy – ydx = `sqrt(x^2 + "y"^2)  "d"x` किस प्रकार का अवकल समीकरण है तथा इसे हल कीजिए। 


अवकल समीकरण `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` की घात है


दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।


`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।


F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।


F(x, y) = `(x^2 + y^2)/(x - y)` कोटि 1 का समघातीय फलन है।


अवकल समीकरण `("d"^2"y")/("d"x^2) - x^2 "dy"/"dx" + x"y"` = x का एक विशिष्ट हल y = x है।


अवकल समीकरण `"dy"/"dx" + 2x"y"` = y को हल कीजिए।


`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।


(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।


अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^(1/4) + x^(1/5)` = 0, के कोटि और घात क्रमश: हैं


y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है


ex cosy dx – ex siny dy = 0 का व्यापक हल है


`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0  का हल है


अवकल समीकरण `("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक है


y = aemx+ be–mx निम्न में से किस अवकल समीकरण को संतुष्ट करता है


अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है


`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है


अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है


`("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + "y"` = 0 का निम्त में से कौन सा व्यापक हल है


अवकल समीकरण coty dx = xdy का हल ______ है।


अवकल समीकरण `("d"x)/("dy") + "P"_1x = "Q"_1` के समाकलन गुणक को `"e"^(int "P"_1"dy")` से लिखा जाता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×