Advertisements
Advertisements
Question
`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।
Solution
दिया गया अवकल समीकरण `"y" + "d"/("d"x) (x"y") = x(sinx + logx)` है।
⇒ `"y" + x * ("dy")/("d"x) + "y" = x(sinx + logx)`
⇒ `x ("dy")/("d"x) = x(sinx + logx) - 2"y"`
⇒ `("dy")/("d"x) = (sinx + logx) - (2"y")/x`
⇒ `("dy")/("d"x) + 2x "y" = (sinx + logx)`
यहाँ, P = `2/x` और Q = `(sinx + log x)`
समाकलन गुणक I.F. = `"e"^(int"Pdx")`
= `"e"^(int 2/x "d"x)`
= `"e"^(2logx)`
= `"e"^(log x^2)`
= x2
∴ हल `"y" xx "I"."F". = int "Q"."I"."F". "d"x + "c"` है।
⇒ `"y" . x^2 = int (sinx + logx)x^2 "d"x + "c"` ....(1)
Let I = `int (sinx + logx)x^2 "d"x`
= `int_"I"x^2 sinx "d"x + int_"iII"^(x^2) log x "d"x`
= `[x^2 . int sinx "d"x - int("D"(x^2) . int sinx "d"x)"d"x] + [logx . intsinx "d"x - int ("D"(logx) . intx^2 "d"x)"d"x]`
= `[x^2(-cosx) -2 int - x cosx "d"x] + [logx . x^3/3 - int 1/x * x^3/3 "d"x]`
= `[-x^2 cosx + 2(xsinx - int1 .sinx "d"x)] + [x^3/3 log x - 1/3 int x^2 "d"x]`
= `-x^2cosx + 2x sinx + 2cosx + x^3/3 log x - 1/9 x^3`
अब समीकरण (1) से हमें प्राप्त होता है
`"y" . x^2 = -x^2 cosx + 2x sinx + 2cosx + x^3/3 log x - 1/9 x^3 + "c"`
∴ y = `-cosx + (2sinx)/x + (2cosx)/x^2 + (xlogx)/3 - 1/9 x + "c" .x^-2`
इसलिए, वाँछित हल `-cosx + (2sinx)/x + (2cosx)/x^2 + (xlogx)/3 - 1/9 x + "c" .x^-2` है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
(1 + x2)dy + 2xy dx = cot x dx (x ≠ 0)
अवकल समीकरण `(1 - y^2) dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:
वक्रों के कुल y = Ae2x + B.e–2x के लिए अवकल समीकरण ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx"` = yex, x = 0, y = e में y का मान बताएं जब x = 1
अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।
मूल बिंदु से गुजरने वाली सरल रेखाओं के कुल का अवकल समीकरण ज्ञात कीजिए।
एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए।
उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता `"y" + "y"/x` है।
बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।
अवकल समीकरण tan x dx + tan y dy = 0 के विशिष्ट हल में स्वेच्छ अचरों की संख्या ______ है।
वक्रों के कुल y = A sinx + B cosx को निरूपित करने वाला अवकल समीकरण ______ है।
जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।
दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।
`"dy"/"dx" + "a"y` = emx का व्यापक हल ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx" + 1` = ex + y को हल कीजिए।
`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।
अवकल समीकरण dy = cosx(2 – y cosecx) dx को हल कीजिए, दिया है कि x = `pi/2` तब y = 2 है।
(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।
`("dy")/("d"x) = cos(x + "y") + sin(x + "y")` को हल कीजिए [संकेत : x + y = z रखिए]
बिंदु (2, 1) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसका किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `(x^2 + "y"^2)/(2x"y")` है।
tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?
अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है
वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है
अवकल समीकरण `(("d"^3"y")/("d"x^3))^2 - 3 ("d"^2"y")/("d"x^2) + 2(("dy")/("d"x))^4` = y4 की कोटि तथा घात क्रमश: है
अवकल समीकरण `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"` का हल है
`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।
`("dy")/("d"x) = "f"(x, "y")` जहाँ f (x, y) एक शून्य घात वाला समघातीय फलन है, को हल करने के लिए सही प्रतिस्थापन y = vx है।
`("dy")/("d"x) = ("y"/x)^(1/3)` का हल `"y"^(2/3) - x^(2/3)` = c है।