Advertisements
Advertisements
Question
`"dy"/"dx" + "a"y` = emx का व्यापक हल ज्ञात कीजिए।
Solution
दिया गया समीकरण है `"dy"/"dx" + "a"y` = emx
यहाँ, P = a और Q = emx
∴ I.F. = `"e"^(int Pdx)`
= `"e"^(int a .dx)`
= eax.
समीकरण का हल है `y xx "I"."F" = int "Q" "I"."F" "d"x + "c"`
⇒ `y."e"^("a"x) = int "e"^"mx" . "e"^("a"x) "d"x + "c"`
⇒ `y . "e"^("a"x) = int "e"^(("m" + "a")x) "d"x + "c"`
⇒ `y . "e"^("a"x) = "e"^(("m" + "a")x)/(("m" + "a")) + "c"`
⇒ y = `"e"^(("m" + "a")x)/(("m" + "a")) . "e"^(-"a"x) + "c"."e"^(-"a"x)`
∴ y = `"e"^("m"x)/(("m" + "a")) + "c" . "e"^(-"a"x)`
APPEARS IN
RELATED QUESTIONS
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + 3y = e^(- 2x)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`cos^2 x dy/dx + y = tan x (0 <= x < pi/2)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`xdy/dx + 2y = x^2 log x`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
(1 + x2)dy + 2xy dx = cot x dx (x ≠ 0)
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`(x + y) dy/dx = 1`
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`dy/dx + 2 y tan x = sin x`; y = 0 यदि x = `pi/4`
अवकल समीकरण `2x * "dy"/"dx" y` = 3 का हल किस कुल को निरूपित करता है?
अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।
दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।
`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।
अवकल समीकरण `"dy"/"dx" + 1` = ex + y को हल कीजिए।
वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं।
`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।
अवकल समीकरण `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0 का व्यापक हल ज्ञात कीजिए।
Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए।
बिंदु (1, 1) से गुजरने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु P (x, y) से खींची गई स्पर्श रेखा, निर्देशांक अक्षों से A और B पर इस प्रकार मिलती है कि AB का मध्य बिंदु P है।
`x ("dy")/("d"x) = "y" (log "y" – log x + 1)` को हल कीजिए।
अवकल समीकरण `cosx ("dy")/("d"x) + "y"sinx` = 1 का समाकलन गुणक है।
`("dy")/("d"x) = ("y" + 1)/(x - 1)`, जब y (1) = 2 है के हलों की संख्या है।
tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?
अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है
वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है
अवकल समीकरण `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है
अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है
वक्र कुल y2 = 4a(x + a) का अवकल समीकरण है
अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है
वक्रों के कुल y = ex (Acosx + Bsinx) को निरूपित करने वाला अवकल समीकरण `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y"` = 0 है।
`x("dy")/("d"x) = "y" + x tan "y"/x` का हल `sin("y"/x)` = cx है।
एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल
समीकरण `("d"^2x)/("dy"^2)` = 0 है।