Advertisements
Advertisements
Question
`x ("dy")/("d"x) = "y" (log "y" – log x + 1)` को हल कीजिए।
Solution
दिया गया है कि: `x ("dy")/("d"x) = "y"(log "y" – log x + 1)`
⇒ `x ("dy")/("d"x) = "y"[log("y"/x) + 1]`
⇒ `("dy")/("d"x) = "y"/x[log("y"/x) + 1]`
क्योंकि, यह एक समघातीय अवकल समीकरण है।
∴ y = vx रखिए
⇒ `("dy")/("d"x) = "v" + x * "dv"/"dx"`
∴ `"v" + x * "dv"/"dx" = "vx"/x[log("vx"/x) + 1]`
⇒ `"v" + x * "dv"/"dx" = "v"[log "v" + 1]`
⇒ `x * "dv"/"dx" = "v"[log "v" + 1] - "v"`
⇒ `x * "dv"/"dx"` = v ....[log v + 1 – 1]
⇒ `x * "dv"/"dx" = "v" * log "v"`
⇒ `"dv"/("v"log"v") = "dx"/x`
दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है
`int "dv"/("v"log"v") = int "dx"/x`
log v = t पर L.H.S. रखिए
`1/"v" "dv"` = dt
∴ `int "dt"/"t" = int "dx"/x`
`log|"t"| = log|x| + log"c"`
⇒ `log|log "v"| = log x"c"`
⇒ log v = xc
⇒ `log("y"/x)` = xc
इसलिए, वाँछित हल `log("y"/x)` = xc है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
(x + y) dy + (x – y) dx = 0; y = 1; यदि x = 1
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
y dx + (x – y2)dy = 0
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`dy/dx + 2 y tan x = sin x`; y = 0 यदि x = `pi/4`
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`dy/dx - 3 y cot x = sin 2x; y = 2` यदि x = `pi/2`
`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।
अवकल समीकरण `2x * "dy"/"dx" y` = 3 का हल किस कुल को निरूपित करता है?
अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है
अवकल समीकरण `x "dt"/"dx" + 2"y"` = x2 का हल है
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।
`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।
F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।
अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।
अवकल समीकरण `"y"^2 "dy"/"dx" + "y"^2 + 1` = 0 का एक हल x + y = tan–1y है।
अवकल समीकरण `("d"^2"y")/("d"x^2) - x^2 "dy"/"dx" + x"y"` = x का एक विशिष्ट हल y = x है।
अवकल समीकरण `"dy"/"dx" + 1` = ex + y को हल कीजिए।
उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।
अवकल समीकरण `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0 का व्यापक हल ज्ञात कीजिए।
Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए।
बिंदु (1, 1) से गुजरने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु P (x, y) से खींची गई स्पर्श रेखा, निर्देशांक अक्षों से A और B पर इस प्रकार मिलती है कि AB का मध्य बिंदु P है।
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^(1/4) + x^(1/5)` = 0, के कोटि और घात क्रमश: हैं
अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^3 + 6"y"^5` = 0 की घात है
अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है
अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।
अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।
अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।
अवकल समीकरण coty dx = xdy का हल ______ है।
`("d"x)/("dy") + "p"_1x = "Q"_1` प्रकार के अवकल समीकरण के हल को x.I.F. = `("I"."F") xx "Q"_1"dy"` द्वारा दिया जाता है।
अवकल समीकरण `("dy")/("d"x) = (x + 2"y")/x` का हल x + y = kx2 है।