Advertisements
Advertisements
Question
अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है
Options
x (y + cosx) = sinx + c
x (y – cosx) = sinx + c
xy cosx = sinx + c
x (y + cosx) = cosx + c
Solution
सही उत्तर x (y + cosx) = sinx + c है।
व्याख्या:
दिया गया अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x है।
क्योंकि, यह एक रैखिक अवकल समीकरण है
∴ P = `1/x` और Q = sin x
समाकलन गुणक I.F. = `"e"^(int 1/x "d"x)`
= `"e"^(log x)`
= x
∴ हल `"y" xx "I"."F" = int "Q" xx "I"."F". "d"x + "c"` है।
`"y" xx x = int sinx . x "d"x + "c"`
⇒ `"y" xx x = int x sin x "d"x + "c"`
⇒ `"y"x = x . int sinx "d"x - int("D"(x)intsinx "d"x)"d"x + "c"`
⇒ `"y"x = x(- cos x) - int - cos x "d"x`
⇒ `"y"x = - x cosx + int cosx "d"x`
⇒ `"y"x = -x cosx + sinx + "c"`
⇒ `"y"x + cosx = sinx + "c"`
⇒ `x("y" + cosx) = sinx + "c"`
APPEARS IN
RELATED QUESTIONS
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
(x + y) dy + (x – y) dx = 0; y = 1; यदि x = 1
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`xdy/dx + 2y = x^2 log x`
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`(1 + x^2) dy/dx + 2xy = 1/(1 + x^2); y = 0` यदि x = 1
एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए।
अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है
दी गई त्रिज्या a के सभी वृत्तों के अवकल समीकरण की कोटि है
अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।
अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।
अवकल समीकरण x(1 + y2)dx + y(1 + x2)dy = 0 का व्यापक हल (1 + x2)(1 + y2) = k है।
अवकल समीकरण `("d"^2"y")/("d"x^2) - x^2 "dy"/"dx" + x"y"` = x का एक विशिष्ट हल y = x है।
`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।
दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।
अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।
ydx – xdy = x2 ydx को हल कीजिए।
अवकल समीकरण `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0 का व्यापक हल ज्ञात कीजिए।
`("dy")/("d"x) -3"y" = sin2x` का व्यापक हल ज्ञात कीजिए।
बिंदु (1, 0) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `("y" - 1)/(x^2 + x)` है।
मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।
`("dy")/("d"x) = ("y" + 1)/(x - 1)`, जब y (1) = 2 है के हलों की संख्या है।
tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?
ex cosy dx – ex siny dy = 0 का व्यापक हल है
अवकल समीकरण `("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक है
वह वक्र जिसके लिए किसी बिंदु पर स्पर्श रेखा की प्रवणता उस बिंदु के x-अक्ष (भुज) तथा y-अक्ष (कोटि) के अनुपात के बराबर है वह है
अवकल समीकरण `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है
अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है
अवकल समीकरण `("d"^2"y")/("d"x^2) + "e"^(("dy")/("d"x))` = 0 की घात ______ है।
कोटि तीन के अवकल समीकरण के व्यापक हल में स्वेच्छ अचरों की संख्या ______ है।
अवकल समीकरण coty dx = xdy का हल ______ है।
`("dy")/("d"x) = ("y"/x)^(1/3)` का हल `"y"^(2/3) - x^(2/3)` = c है।