Advertisements
Advertisements
प्रश्न
अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है
विकल्प
x (y + cosx) = sinx + c
x (y – cosx) = sinx + c
xy cosx = sinx + c
x (y + cosx) = cosx + c
उत्तर
सही उत्तर x (y + cosx) = sinx + c है।
व्याख्या:
दिया गया अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x है।
क्योंकि, यह एक रैखिक अवकल समीकरण है
∴ P = `1/x` और Q = sin x
समाकलन गुणक I.F. = `"e"^(int 1/x "d"x)`
= `"e"^(log x)`
= x
∴ हल `"y" xx "I"."F" = int "Q" xx "I"."F". "d"x + "c"` है।
`"y" xx x = int sinx . x "d"x + "c"`
⇒ `"y" xx x = int x sin x "d"x + "c"`
⇒ `"y"x = x . int sinx "d"x - int("D"(x)intsinx "d"x)"d"x + "c"`
⇒ `"y"x = x(- cos x) - int - cos x "d"x`
⇒ `"y"x = - x cosx + int cosx "d"x`
⇒ `"y"x = -x cosx + sinx + "c"`
⇒ `"y"x + cosx = sinx + "c"`
⇒ `x("y" + cosx) = sinx + "c"`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
(x + y) dy + (x – y) dx = 0; y = 1; यदि x = 1
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`cos^2 x dy/dx + y = tan x (0 <= x < pi/2)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`(x + y) dy/dx = 1`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`(x + 3y^2) dy/dx = y, (y > 0)`
अवकल समीकरण `(1 - y^2) dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:
उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता `"y" + "y"/x` है।
बताइए कि समीकरण xdy – ydx = `sqrt(x^2 + "y"^2) "d"x` किस प्रकार का अवकल समीकरण है तथा इसे हल कीजिए।
अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है
अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है
अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।
जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।
`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।
`(x + 2"y"^3) "dy"/"dx"` = y का व्यापक हल ज्ञात कीजिए।
यदि y (x) समीकरण `((2 + sinx)/(1 + "y"))"dy"/"dx"` = – cosx का हल है और y (0) = 1, है तब `"y"(pi/2)` का मान ज्ञात कीजिए।
अवकल समीकरण dy = cosx(2 – y cosecx) dx को हल कीजिए, दिया है कि x = `pi/2` तब y = 2 है।
मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।
बिंदु (1, 1) से गुजरने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु P (x, y) से खींची गई स्पर्श रेखा, निर्देशांक अक्षों से A और B पर इस प्रकार मिलती है कि AB का मध्य बिंदु P है।
यदि y = e–x (Acosx + Bsinx) तब y एक हल है
y = Acos αx + Bsin αx जहाँ A और B स्वेछ अचर हैं के लिए अवकल समीकरण है
निम्न से कौन सा अवकल समीकरण कोटि 2 का है?
अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है
`x ("dy")/("d"x) + "y"` = ex का हल है
अवकल समीकरण जिसका एक हल y = acosx + bsinx है
अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है
अवकल समीकरण `("d"^2"y")/("d"x^2) + "e"^(("dy")/("d"x))` = 0 की घात ______ है।
कोटि तीन के अवकल समीकरण के व्यापक हल में स्वेच्छ अचरों की संख्या ______ है।
अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।
`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।
अवकल समीकरण `("dy")/("d"x) = (x + 2"y")/x` का हल x + y = kx2 है।