हिंदी

Dydy(1+x2)dydx+2xy-4x2 = 0 का हल ______ है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।

रिक्त स्थान भरें

उत्तर

`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल `underline(4/3 x^3/((1 + x^2)) + "c" (1 + x^2)^-1)` है।

व्याख्या:

दिया गया अवकल समीकरण `(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 है।

⇒ `("dy")/("d"x) + (2x"y")/(1 + x^2) = (4x^2)/(1 + x^2)`

क्योंकि यह एक रैखिक अवकल समीकरण है।

∴ P = `(2x)/(1 + x^2)` और Q = `(4x^2)/(1 + x^2)`

समाकलन गुणक I.F. = `"e"^(int "Pdx")`

= `"e"^(int (2x)/(1 + x^2) "d"x)`

= `"e"^(log(1 + x^2))`

= `(1 + x^2)`

∴ हल `"y" xx "I"."F" = int "Q" xx "I"."F". "d"x + "c"` है।

⇒ `"y" xx (1 + x^2) = int (4x)/(1 + x^2) xx (1 + x^2)"d"x + "c"`

⇒ `"y" xx (1 + x^2) = int 4x^2 "d"x + "c"`

⇒ `"y" xx (1 + x^2) = 4/3 x^3 + "c"`

⇒ y = `4/3 x^3/((1 + x^2)) + "c"(1 + x^2)^-1`

shaalaa.com
अवकल समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १९७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 9 अवकल समीकरण
प्रश्नावली | Q 76. (vii) | पृष्ठ १९७

संबंधित प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + y/x + x^2`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + (sec x)y = tan x (0 <= x <= pi/2)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`cos^2 x dy/dx + y = tan x (0 <= x < pi/2)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x log x dy/dx + y = 2/x log x`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`(x + 3y^2) dy/dx = y, (y > 0)`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`(1 + x^2) dy/dx + 2xy = 1/(1 + x^2); y = 0` यदि x = 1


अवकल समीकरण `(1 - y^2)  dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:


अवकल समीकरण `2x * "dy"/"dx" y` = 3 का हल किस कुल को निरूपित करता है?


अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है


अवकल समीकरण `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` को हल करने के लिए उपयुक्त प्रतिस्थापन ______ है।


अवकल समीकरण  `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।


`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।


F(x, y) = `(x^2 + y^2)/(x - y)` कोटि 1 का समघातीय फलन है।


अवकल समीकरण `"y"^2 "dy"/"dx" + "y"^2 + 1` = 0 का एक हल x + y = tan–1y है।


ydx – xdy = x2 ydx को हल कीजिए।


उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।


अवकल समीकरण `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0 का व्यापक हल ज्ञात कीजिए।


अवकल समीकरण dy = cosx(2 – y cosecx) dx को हल कीजिए, दिया है कि x = `pi/2` तब y = 2 है।


केंद्र (1, 2) वाले सभी सकेंद्री वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।


`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0  का हल है


अवकल समीकरण `("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक है


वह वक्र जिसके लिए किसी बिंदु पर स्पर्श रेखा की प्रवणता उस बिंदु के x-अक्ष (भुज) तथा y-अक्ष (कोटि) के अनुपात के बराबर है वह है


समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है


`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है


अवकल समीकरण `(("d"^3"y")/("d"x^3))^2 - 3 ("d"^2"y")/("d"x^2) + 2(("dy")/("d"x))^4` = y4 की कोटि तथा घात क्रमश: है


`("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + "y"` = 0 का निम्त में से कौन सा व्यापक हल है


अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है


अवकल समीकरण  `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"` का हल है


अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।


वृत्तों के कुल x2 + (y – a)2 = aको निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×