Advertisements
Advertisements
प्रश्न
अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।
उत्तर
अवकल समीकरण ydx + (x + xy)dy = 0 का हल xy = ce–y है।
व्याख्या:
दिया गया अवकल समीकरण ydx + (x + xy)dy = 0 है।
⇒ (x + xy)dy = – ydx
⇒ x(1 + y)dy = – ydx
⇒ `(1 + "y")/"y" "dy" = - 1/x "d"x`
दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है
`int (1 + "y")/"y" "dy" = - int 1/x "d"x`
⇒ `int(1/"y" + 1)"dy" = -int 1/x "d"x`
⇒ log y + y = – log x + log c
⇒ log x + log y + log e y = log c
⇒ log(xy . ey) = log c
∴ xy = ce–y
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
(x + y) dy + (x – y) dx = 0; y = 1; यदि x = 1
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`(x + y) dy/dx = 1`
वक्रों के कुल y = Ae2x + B.e–2x के लिए अवकल समीकरण ज्ञात कीजिए।
अवकल समीकरण `2x * "dy"/"dx" y` = 3 का हल किस कुल को निरूपित करता है?
परवलयों y2 = 4ax के कुल को निरूपित करने वाले अवकल समीकरण की कोटि ______ है।
अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।
जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।
`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।
दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।
अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।
उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।
Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए।
`("dy")/("d"x) = cos(x + "y") + sin(x + "y")` को हल कीजिए [संकेत : x + y = z रखिए]
`("dy")/("d"x) -3"y" = sin2x` का व्यापक हल ज्ञात कीजिए।
निम्न से कौन सा अवकल समीकरण कोटि 2 का है?
`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0 का हल है
y = aemx+ be–mx निम्न में से किस अवकल समीकरण को संतुष्ट करता है
`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है
वह वक्र जिसके लिए किसी बिंदु पर स्पर्श रेखा की प्रवणता उस बिंदु के x-अक्ष (भुज) तथा y-अक्ष (कोटि) के अनुपात के बराबर है वह है
समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है
`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है
अवकल समीकरण `(("d"^3"y")/("d"x^3))^2 - 3 ("d"^2"y")/("d"x^2) + 2(("dy")/("d"x))^4` = y4 की कोटि तथा घात क्रमश: है
वक्र कुल y2 = 4a(x + a) का अवकल समीकरण है
अवकल समीकरण `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"` का हल है
अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।
`("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक ______ है।
`("d"x)/("dy") + "p"_1x = "Q"_1` प्रकार के अवकल समीकरण के हल को x.I.F. = `("I"."F") xx "Q"_1"dy"` द्वारा दिया जाता है।
अवकल समीकरण `("dy")/("d"x) = (x + 2"y")/x` का हल x + y = kx2 है।