Advertisements
Advertisements
प्रश्न
दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।
उत्तर
दिया गया समीकरण `"dy"/"dx"` = e–2y है।
⇒ `"dy"/"e"^(-2"y")` = dx
⇒ `"e"^(2"y") * "dy"` = dx
दोनों पक्षों का समाकलन करने पर
`int "e"^(2"y") "dy" = int "d"x`
⇒ `1/2 "e"^(2"y")` = x + c
अब y = 0 और x = 5
⇒ `1/2 "e"^0` = 5 + c
⇒ c = `1/2 - 5 = - 9/2`
y = 3 रखने पर, हमें प्राप्त होता है
`1/2 "e"^6 = x - 9/2`
⇒ x = `1/2 "e"^6 + 9/2`
अत: का वाँछित मान x =`1/2 ("e"^6 + 9)`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`(x + y) dy/dx = 1`
अवकल समीकरण `(1 - y^2) dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:
बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।
अवकल समीकरण `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` की घात है
अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)` के क्रमशः कोटि और घात हैं
अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है
अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है
अवकल समीकरण tan x dx + tan y dy = 0 के विशिष्ट हल में स्वेच्छ अचरों की संख्या ______ है।
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।
अवकल समीकरण `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` को हल करने के लिए उपयुक्त प्रतिस्थापन ______ है।
अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।
वक्रों के कुल y = A sinx + B cosx को निरूपित करने वाला अवकल समीकरण ______ है।
`"dy"/"dx" + "a"y` = emx का व्यापक हल ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx" + 1` = ex + y को हल कीजिए।
ydx – xdy = x2 ydx को हल कीजिए।
यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`
(x + y) (dx – dy) = dx + dy को हल कीजिए। [संकेत : dx और dy को पृथक करने के पश्चात x + y = z रखिए ]
बिंदु (2, 1) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसका किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `(x^2 + "y"^2)/(2x"y")` है।
मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।
tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?
ex cosy dx – ex siny dy = 0 का व्यापक हल है
अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है
अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है
वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है
समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है
अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।
अवकल समीकरण `("d"x)/("dy") + "P"_1x = "Q"_1` के समाकलन गुणक को `"e"^(int "P"_1"dy")` से लिखा जाता है।
`("dy")/("d"x) = ("y"/x)^(1/3)` का हल `"y"^(2/3) - x^(2/3)` = c है।
`x("dy")/("d"x) = "y" + x tan "y"/x` का हल `sin("y"/x)` = cx है।