हिंदी

दिया है कि dydxedydx=e-2x और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।

योग

उत्तर

दिया गया समीकरण `"dy"/"dx"` = e–2y है।

⇒ `"dy"/"e"^(-2"y")` = dx

⇒ `"e"^(2"y") * "dy"` = dx

दोनों पक्षों का समाकलन करने पर

`int "e"^(2"y") "dy" = int "d"x`

⇒ `1/2 "e"^(2"y")` = x + c

अब y = 0 और x = 5

⇒ `1/2 "e"^0` = 5 + c

⇒ c = `1/2 - 5 = - 9/2`

y = 3 रखने पर, हमें प्राप्त होता है

`1/2 "e"^6 = x - 9/2`

⇒ x = `1/2 "e"^6 + 9/2`

अत: का वाँछित मान x =`1/2 ("e"^6 + 9)`

shaalaa.com
अवकल समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १८८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 9 अवकल समीकरण
प्रश्नावली | Q 3 | पृष्ठ १८८

संबंधित प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`(x + y) dy/dx = 1`


अवकल समीकरण `(1 - y^2)  dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:


बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।


अवकल समीकरण `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` की घात है


अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)`  के क्रमशः कोटि और घात हैं


अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है


अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है


अवकल समीकरण tan x dx + tan y dy = 0 के विशिष्ट हल में स्वेच्छ अचरों की संख्या ______ है।


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।


अवकल समीकरण `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` को हल करने के लिए उपयुक्त प्रतिस्थापन ______ है।


अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।


वक्रों के कुल y = A sinx + B cosx को निरूपित करने वाला अवकल समीकरण ______ है।


`"dy"/"dx" + "a"y` = emx का व्यापक हल ज्ञात कीजिए।


अवकल समीकरण `"dy"/"dx" + 1` = ex + y को हल कीजिए।


ydx – xdy = x2 ydx को हल कीजिए।


यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का  y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`


(x + y) (dx – dy) = dx + dy को हल कीजिए। [संकेत : dx और dy को पृथक करने के पश्चात x + y = z रखिए ]


बिंदु (2, 1) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसका किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता  `(x^2 + "y"^2)/(2x"y")` है।


मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।


tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?


ex cosy dx – ex siny dy = 0 का व्यापक हल है


अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है


अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है


वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है


समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है


अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।


अवकल समीकरण `("d"x)/("dy") + "P"_1x = "Q"_1` के समाकलन गुणक को `"e"^(int "P"_1"dy")` से लिखा जाता है।


`("dy")/("d"x) = ("y"/x)^(1/3)` का हल  `"y"^(2/3) - x^(2/3)` = c है।


`x("dy")/("d"x) = "y" + x tan  "y"/x` का हल `sin("y"/x)` = cx है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×