हिंदी

यदि tdydtty(1+t)dydt-ty = 1 का y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = -12 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का  y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`

योग

उत्तर

दिया गया समीकरण `(1 + "t")"dy"/"dt" - "ty"` = 1 है।

⇒ `"dy"/"dt" - ("t"/(1 + "t")) "y" = 1/(1 + "t")`

यहाँ, P = `(-"t")/(1 + "t")` और Q = `1/(1 + "t")`

∴ समाकलन गुणक I.F. = `"e"^(int"pdt")`

= `"e"^(int (-1)/(1 + "t") "dt")`

= `"e"^(-int (1 + "t" - 1)/(1 + "t") "dt")`

= `"e"^(-int(1 - 1/(1 + "t"))"dt")`

= `"e"^(-["t" - log(1 + "t")])`

= `"e"^(-"t" + log(1 + "t"))`

= `"e"^(-"t") * "e"^(log(1 + "t"))`

∴ I.F. = `"e"^(-"t") * (1 + "t")`

दिए गए अवकल समीकरण का वाँछित हल

y . I. F. = `int "Q" . "I"."F". "dt" + "c"`

⇒ `"y" * "e"^-"t" (1 + "t") = int 1/((1 + "t")) * "e"^-"t" * (1 + "t")  "dt" + "c"`

⇒ `"y" * "e"^-"t" (1 + "t") = int "e"^-"t"  "dt" + "c"`

⇒ `"y" * "e"^-"t" (1 + "t") = - "e"^-"t" + "c"`

t = 0 और y = –1  ....[∵ y(0) = –1] रखिए

⇒ `-1 * "e"^0 * 1 = -"e"^0 + "c"`

⇒ –1 = –1 + c

⇒ c = 0

तो समीकरण बन जाता है

`"ye"^-"t" (1 + "t") = -"e"^-"t"`

अब t = 1 रखिए

∴ `"y" * "e"^-1 (1 + 1) = -"e"^-1`

⇒ 2y = –1

⇒ y = `- 1/2`

इसलिए y(1) = `-1/2` सत्यापित है।

shaalaa.com
अवकल समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १८९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 9 अवकल समीकरण
प्रश्नावली | Q 12 | पृष्ठ १८९

संबंधित प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

(x + y) dy + (x – y) dx = 0; y = 1; यदि x = 1


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

(1 + x2)dy + 2xy dx = cot x dx (x ≠ 0)


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`dy/dx + 2  y tan x = sin x`; y = 0 यदि x = `pi/4`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`(1 + x^2) dy/dx + 2xy = 1/(1 + x^2); y = 0` यदि x = 1


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`dy/dx - 3 y cot x = sin 2x; y = 2` यदि x = `pi/2`


अवकल समीकरण `"dy"/"dx"` = yex,  x = 0, y = e में y का मान बताएं जब x = 1


अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।


उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता `"y" + "y"/x` है।


अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है


परवलयों y2 = 4ax के कुल को निरूपित करने वाले अवकल समीकरण की कोटि ______ है।


अवकल समीकरण tan x dx + tan y dy = 0 के विशिष्ट हल में स्वेच्छ अचरों की संख्या ______ है।


अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।


अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।


F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।


अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।


दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।


अवकल समीकरण  `"dy"/"dx"` = 1 + x + y2 + xy2,  को हल कीजिए जब y = 0, x = 0


`(x + 2"y"^3)  "dy"/"dx"` = y का व्यापक हल ज्ञात कीजिए।


उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।


मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।


अवकल समीकरण `("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक है


`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है


अवकल समीकरण `(("d"^3"y")/("d"x^3))^2 - 3 ("d"^2"y")/("d"x^2) + 2(("dy")/("d"x))^4` = y4 की कोटि तथा घात क्रमश: है


अवकल समीकरण coty dx = xdy का हल ______ है।


अवकल समीकरण `("d"x)/("dy") + "P"_1x = "Q"_1` के समाकलन गुणक को `"e"^(int "P"_1"dy")` से लिखा जाता है।


`("dy")/("d"x) = ("y"/x)^(1/3)` का हल  `"y"^(2/3) - x^(2/3)` = c है।


`x("dy")/("d"x) = "y" + x tan  "y"/x` का हल `sin("y"/x)` = cx है।


एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल

समीकरण `("d"^2x)/("dy"^2)` = 0 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×