Advertisements
Advertisements
प्रश्न
यदि y (x) समीकरण `((2 + sinx)/(1 + "y"))"dy"/"dx"` = – cosx का हल है और y (0) = 1, है तब `"y"(pi/2)` का मान ज्ञात कीजिए।
उत्तर
दिया गया समीकरण `((2 + sinx)/(1 + "y"))"dy"/"dx"` = – cosx है
⇒ `((2 + sin "y")/(cos x))"dy"/"dx"` = –(1 + y)
⇒ `"dy"/((1 + "y")) = -((cosx)/(2 + sinx))"d"x`
दोनों पक्षों को जोड़ने पर, हम प्राप्त करते हैं
`int "dy"/(1 + y) = - int cosx/(2 + sinx) "d"x`
⇒ `log|1 + "y"| = - log|2 + sinx| + logc`
⇒ `log|1 + "y"| + log|2 + sinx|` = log c
⇒ `log(1 + "y")(2 + sinx)` = log c
⇒ `(1 + "y")(2 + sinx)` = c
x = 0 और y = 1 रखने पर हमें प्राप्त होता है
(1 + 1)(2 + sin 0) = c
⇒ 4 = c
∴ समीकरण (1 + y)(2 + sinx) = 4 है
अब x = `pi/2` रखिए
∴ `(1 + "y")(2 + sin pi/2)` = 4
⇒ (1 + y)(2 + 1) = 4
⇒ 1 + y = `4/3`
⇒ y = `4/3 - 1`
⇒ `1/3`
तो, `"y"(pi/2) = 1/3`
इसलिए, वाँछित हल `"y"(pi/2) = 1/3` है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + 3y = e^(- 2x)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`xdy/dx + 2y = x^2 log x`
वक्रों के कुल y = Ae2x + B.e–2x के लिए अवकल समीकरण ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx"` = yex, x = 0, y = e में y का मान बताएं जब x = 1
बताइए कि समीकरण xdy – ydx = `sqrt(x^2 + "y"^2) "d"x` किस प्रकार का अवकल समीकरण है तथा इसे हल कीजिए।
अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है
परवलयों y2 = 4ax के कुल को निरूपित करने वाले अवकल समीकरण की कोटि ______ है।
वक्रों के कुल y = A sinx + B cosx को निरूपित करने वाला अवकल समीकरण ______ है।
`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।
F(x, y) = `(x^2 + y^2)/(x - y)` कोटि 1 का समघातीय फलन है।
अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।
अवकल समीकरण `"dy"/"dx"` = 1 + x + y2 + xy2, को हल कीजिए जब y = 0, x = 0
उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।
y2dx + (x2 – xy + y2) dy = 0 का व्यापक हल ज्ञात कीजिए।
अवकल समीकरण dy = cosx(2 – y cosecx) dx को हल कीजिए, दिया है कि x = `pi/2` तब y = 2 है।
`("dy")/("d"x) -3"y" = sin2x` का व्यापक हल ज्ञात कीजिए।
y = Acos αx + Bsin αx जहाँ A और B स्वेछ अचर हैं के लिए अवकल समीकरण है
y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है
ex cosy dx – ex siny dy = 0 का व्यापक हल है
अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है
वक्र कुल y2 = 4a(x + a) का अवकल समीकरण है
`("d"x)/("d"x) + "P"_1x = "Q"_1` प्रकार के अवकल समीकरण का व्यापक हल ______ है।
अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।
अवकल समीकरण `("d"x)/("dy") + "P"_1x = "Q"_1` के समाकलन गुणक को `"e"^(int "P"_1"dy")` से लिखा जाता है।
`("d"x)/("dy") + "p"_1x = "Q"_1` प्रकार के अवकल समीकरण के हल को x.I.F. = `("I"."F") xx "Q"_1"dy"` द्वारा दिया जाता है।