Advertisements
Advertisements
प्रश्न
अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।
उत्तर
दिया गया अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` है।
(x2 – 1) से भाग देने पर हमें प्राप्त होता है।
`"dy"/"dx" + "xy"/(x^2 - 1) = 1/(x^2 - 1)`
यह प्रथम कोटि और प्रथम कोटि का रैखिक अवकल समीकरण है।
∴ P = `(2x)/(x^2 - 1)` और Q = `1/(x^2 - 1)^2`
समाकलन गुणक I.F. = `"e"^(int Pdx)`
= `"e"^(int (2x)/(x^2 - 1) "d"x`
= `"e"^(log(x^2 - 1)`
= `(x^2 - 1)`
∴ समीकरण का हल `"y" xx "I"."F". = int "Q" . "I"."F". "d"x + "C"` है।
⇒ `"y" xx (x^2 - 1) = int 1/(x^2 - 1)^2 xx (x^2 - 1) "d"x + "C"`
⇒ `"y" xx (x^2 - 1) = int 1/(x^2 - 1) "d"x + "C"`
⇒ `"y"(x^2 - 1) = 1/2 log|(x - 1)/(x + 1)| + "C"`.
इसलिए वाँछित हल `"y"(x^2 - 1) = 1/2 log|(x - 1)/(x + 1)| + "C"` है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + y/x + x^2`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`xdy/dx + 2y = x^2 log x`
`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।
बताइए कि समीकरण xdy – ydx = `sqrt(x^2 + "y"^2) "d"x` किस प्रकार का अवकल समीकरण है तथा इसे हल कीजिए।
निम्न में से कौन सा x और y में समघातीय फलन नहीं है।
परवलयों y2 = 4ax के कुल को निरूपित करने वाले अवकल समीकरण की कोटि ______ है।
अवकल समीकरण `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 की घात ______ हैं।
अवकल समीकरण tan x dx + tan y dy = 0 के विशिष्ट हल में स्वेच्छ अचरों की संख्या ______ है।
अवकल समीकरण `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` को हल करने के लिए उपयुक्त प्रतिस्थापन ______ है।
अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।
अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।
दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।
यदि y (x) समीकरण `((2 + sinx)/(1 + "y"))"dy"/"dx"` = – cosx का हल है और y (0) = 1, है तब `"y"(pi/2)` का मान ज्ञात कीजिए।
यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`
वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं।
उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।
`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।
बिंदु (1, 0) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `("y" - 1)/(x^2 + x)` है।
`(x"dy")/("d"x) - "y" = x^4 - 3x` का समाकलन गुणक है:
अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है
y = aemx+ be–mx निम्न में से किस अवकल समीकरण को संतुष्ट करता है
`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है
अवकल समीकरण `(("d"^3"y")/("d"x^3))^2 - 3 ("d"^2"y")/("d"x^2) + 2(("dy")/("d"x))^4` = y4 की कोटि तथा घात क्रमश: है
`("d"x)/("d"x) + "P"_1x = "Q"_1` प्रकार के अवकल समीकरण का व्यापक हल ______ है।
अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।
`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।
अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।
`("dy")/("d"x) = "f"(x, "y")` जहाँ f (x, y) एक शून्य घात वाला समघातीय फलन है, को हल करने के लिए सही प्रतिस्थापन y = vx है।
`("dy")/("d"x) = ("y"/x)^(1/3)` का हल `"y"^(2/3) - x^(2/3)` = c है।