हिंदी

Dydyedydx+y=e-x, y(0) = 0 का हल है - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है

विकल्प

  • y = e–x (x – 1)

  • y = xex

  • y = xe–x + 1

  • y = xe–x

MCQ

उत्तर

सही उत्तर y = xe–x है। 

व्याख्या:

दिया गया अवकल समीकरण `("dy")/("d"x) + "y" = "e"^-x`

क्योंकि, यह एक रैखिक अवकल समीकरण है तो P = 1 और Q = `"e"^-x`

समाकलन गुणक I.F. = `"e"^(int "Pdx")`

= `"e"^(int 1. "d"x)`

= ex

∴ हल `"y" xx "I"."F" = int "Q" xx "I"."F". "d"x + "c"` है।

⇒ `"y" xx "e"^x = int"e"^-x xx "e"^x"d"x + "c"`

⇒ `"y" xx "e"^x = int "e"^0 "d"x + "c"`

⇒ `"y" xx "e"^x = int 1."d"x + "c"`

⇒ `"y" xx "e"^x = x + "c"`

y = 0 और x = 0 रखिए

∴ 0 = 0 + c

∴ c = 0

∴ समीकरण `"y" xx "e"^x` = x है।

तो y = `x"e"^-x`.

shaalaa.com
अवकल समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १९५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 9 अवकल समीकरण
प्रश्नावली | Q 66 | पृष्ठ १९५

संबंधित प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

y dx + (x – y2)dy = 0


बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।


अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है


अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)`  के क्रमशः कोटि और घात हैं


अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है


अवकल समीकरण `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` को हल करने के लिए उपयुक्त प्रतिस्थापन ______ है।


`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।


अवकल समीकरण `("d"^2"y")/("d"x^2) - x^2 "dy"/"dx" + x"y"` = x का एक विशिष्ट हल y = x है।


उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।


अवकल समीकरण `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0 का व्यापक हल ज्ञात कीजिए।


केंद्र (1, 2) वाले सभी सकेंद्री वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।


`("dy")/("d"x) = cos(x + "y") + sin(x + "y")` को हल कीजिए [संकेत : x + y = z रखिए]


अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।


y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है


`(x"dy")/("d"x) - "y" = x^4 - 3x`  का समाकलन गुणक है:


`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है


निम्न से कौन सा अवकल समीकरण कोटि 2 का है?


अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है


वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है


अवकल समीकरण  `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है


अवकल समीकरण `(("d"^3"y")/("d"x^3))^2 - 3 ("d"^2"y")/("d"x^2) + 2(("dy")/("d"x))^4` = y4 की कोटि तथा घात क्रमश: है


अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है


`("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + "y"` = 0 का निम्त में से कौन सा व्यापक हल है


`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है


`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।


`x("dy")/("d"x) = "y" + x tan  "y"/x` का हल `sin("y"/x)` = cx है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×