Advertisements
Advertisements
प्रश्न
`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है
विकल्प
y = e–x (x – 1)
y = xex
y = xe–x + 1
y = xe–x
उत्तर
सही उत्तर y = xe–x है।
व्याख्या:
दिया गया अवकल समीकरण `("dy")/("d"x) + "y" = "e"^-x`
क्योंकि, यह एक रैखिक अवकल समीकरण है तो P = 1 और Q = `"e"^-x`
समाकलन गुणक I.F. = `"e"^(int "Pdx")`
= `"e"^(int 1. "d"x)`
= ex
∴ हल `"y" xx "I"."F" = int "Q" xx "I"."F". "d"x + "c"` है।
⇒ `"y" xx "e"^x = int"e"^-x xx "e"^x"d"x + "c"`
⇒ `"y" xx "e"^x = int "e"^0 "d"x + "c"`
⇒ `"y" xx "e"^x = int 1."d"x + "c"`
⇒ `"y" xx "e"^x = x + "c"`
y = 0 और x = 0 रखिए
∴ 0 = 0 + c
∴ c = 0
∴ समीकरण `"y" xx "e"^x` = x है।
तो y = `x"e"^-x`.
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
y dx + (x – y2)dy = 0
बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।
अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है
अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)` के क्रमशः कोटि और घात हैं
अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है
अवकल समीकरण `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` को हल करने के लिए उपयुक्त प्रतिस्थापन ______ है।
`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।
अवकल समीकरण `("d"^2"y")/("d"x^2) - x^2 "dy"/"dx" + x"y"` = x का एक विशिष्ट हल y = x है।
उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।
अवकल समीकरण `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0 का व्यापक हल ज्ञात कीजिए।
केंद्र (1, 2) वाले सभी सकेंद्री वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।
`("dy")/("d"x) = cos(x + "y") + sin(x + "y")` को हल कीजिए [संकेत : x + y = z रखिए]
अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।
y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है
`(x"dy")/("d"x) - "y" = x^4 - 3x` का समाकलन गुणक है:
`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है
निम्न से कौन सा अवकल समीकरण कोटि 2 का है?
अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है
वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है
अवकल समीकरण `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है
अवकल समीकरण `(("d"^3"y")/("d"x^3))^2 - 3 ("d"^2"y")/("d"x^2) + 2(("dy")/("d"x))^4` = y4 की कोटि तथा घात क्रमश: है
अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है
`("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + "y"` = 0 का निम्त में से कौन सा व्यापक हल है
`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है
`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।
`x("dy")/("d"x) = "y" + x tan "y"/x` का हल `sin("y"/x)` = cx है।