Advertisements
Advertisements
प्रश्न
अवकल समीकरण `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है
विकल्प
`"y" = "ce"^((-x^2)/2) `
`"y" = "ce"^((x^2)/2) `
y = `(x + "c")"e"^((x^2)/2`
y = `("c" - x)"e"^((x^2)/2`
उत्तर
सही उत्तर `underline("y" = (x + "c")"e"^((x^2)/2)` है।
व्याख्या:
दिया गया अवकलन समीकरण`("dy")/("d"x) = "e"^(x^2/2) + x"y"`
⇒ `("dy")/("d"x) - x"y" = "e"^((x^2)/2`
क्योंकि यह रैखिक अवकल समीकरण है।
जहाँ P = –x और Q = `"e"^((x^2)/2`
∴ समाकलन गुणक I.F. = `"e"^(int "Pdx")`
= `"e"^(int -x "d"x)`
= `"e"^(- x^2/2)`
तो, हल `"y" xx "I"."F". = int "Q" xx "I"."F". "d"x + "c"` है।
⇒ `"y" xx "e"^( x^2/2) = int "e"^(x^2/2) "e"^(- x^2/2) "d"x + "c"`
⇒ `"y" xx "e"^(- x^2/2) = int "e"^0 "d"x + "c"`
⇒ `"y" xx "e"^(- x^2/2) = int 1 . "d"x + "c"`
⇒ `"y" xx "e"^(- x^2/2) = x + "c"`
∴ y = `(x + "c")"e"^(x^2/2)`.
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x log x dy/dx + y = 2/x log x`
अवकल समीकरण x`dy/dx - y = 2x^2` का समाकलन गुणक है:
एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए।
बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।
अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है
परवलयों y2 = 4ax के कुल को निरूपित करने वाले अवकल समीकरण की कोटि ______ है।
अवकल समीकरण tan x dx + tan y dy = 0 के विशिष्ट हल में स्वेच्छ अचरों की संख्या ______ है।
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।
अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।
अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।
अवकल समीकरण `"dy"/"dx" + 1` = ex + y को हल कीजिए।
केंद्र (1, 2) वाले सभी सकेंद्री वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।
(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।
बिंदु (1, 0) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `("y" - 1)/(x^2 + x)` है।
अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है
`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0 का हल है
`x ("dy")/("d"x) + "y"` = ex का हल है
वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है
अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है
`("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + "y"` = 0 का निम्त में से कौन सा व्यापक हल है
अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है
अवकल समीकरण `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"` का हल है
अवकल समीकरण `("d"^2"y")/("d"x^2) + "e"^(("dy")/("d"x))` = 0 की घात ______ है।
अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।
`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।
`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।
`("dy")/("d"x) = "f"(x, "y")` जहाँ f (x, y) एक शून्य घात वाला समघातीय फलन है, को हल करने के लिए सही प्रतिस्थापन y = vx है।
वृत्तों के कुल x2 + (y – a)2 = a2 को निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।
एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल
समीकरण `("d"^2x)/("dy"^2)` = 0 है।