हिंदी

अवकल समीकरण dydeydydx=ex22+xy का व्यापक हल है - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

अवकल समीकरण  `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है

विकल्प

  • `"y" = "ce"^((-x^2)/2) `

  • `"y" = "ce"^((x^2)/2) `

  • y = `(x + "c")"e"^((x^2)/2`

  • y = `("c" - x)"e"^((x^2)/2`

MCQ

उत्तर

सही उत्तर `underline("y" = (x + "c")"e"^((x^2)/2)` है। 

व्याख्या:

दिया गया अवकलन समीकरण`("dy")/("d"x) = "e"^(x^2/2) + x"y"`

⇒ `("dy")/("d"x) - x"y" = "e"^((x^2)/2`

क्योंकि यह रैखिक अवकल समीकरण है। 

जहाँ P = –x और Q = `"e"^((x^2)/2`

∴ समाकलन गुणक I.F. = `"e"^(int "Pdx")`

= `"e"^(int -x  "d"x)`

= `"e"^(- x^2/2)`

तो, हल `"y" xx "I"."F". = int "Q" xx "I"."F".  "d"x + "c"` है। 

⇒ `"y" xx "e"^( x^2/2) = int "e"^(x^2/2) "e"^(- x^2/2)  "d"x + "c"`

⇒ `"y" xx "e"^(- x^2/2) = int "e"^0  "d"x + "c"`

⇒ `"y" xx "e"^(- x^2/2) = int 1 . "d"x + "c"`

⇒ `"y" xx "e"^(- x^2/2) = x + "c"`

∴ y = `(x + "c")"e"^(x^2/2)`.

shaalaa.com
अवकल समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १९५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 9 अवकल समीकरण
प्रश्नावली | Q 63 | पृष्ठ १९५

संबंधित प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x log x dy/dx + y = 2/x log x`


अवकल समीकरण x`dy/dx - y = 2x^2` का समाकलन गुणक है:


एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए। 


बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।


अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है


परवलयों y2 = 4ax के कुल को निरूपित करने वाले अवकल समीकरण की कोटि ______ है।


अवकल समीकरण tan x dx + tan y dy = 0 के विशिष्ट हल में स्वेच्छ अचरों की संख्या ______ है।


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।


अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।


अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।


अवकल समीकरण `"dy"/"dx" + 1` = ex + y को हल कीजिए।


केंद्र (1, 2) वाले सभी सकेंद्री वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।


(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।


बिंदु (1, 0) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `("y" - 1)/(x^2 + x)` है।


अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है


`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0  का हल है


`x ("dy")/("d"x) + "y"` = ex का हल है


वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है


अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है


`("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + "y"` = 0 का निम्त में से कौन सा व्यापक हल है


अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है


अवकल समीकरण  `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"` का हल है


अवकल समीकरण `("d"^2"y")/("d"x^2) + "e"^(("dy")/("d"x))` = 0 की घात ______ है।


अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।


`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।


`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।


 `("dy")/("d"x) = "f"(x, "y")` जहाँ f (x, y) एक शून्य घात वाला समघातीय फलन है, को हल करने के लिए सही प्रतिस्थापन y = vx है।


वृत्तों के कुल x2 + (y – a)2 = aको निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।


एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल

समीकरण `("d"^2x)/("dy"^2)` = 0 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×