Advertisements
Advertisements
प्रश्न
`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0 का हल है
विकल्प
y = ex (x – 1)
y = xe–x
y = xe–x + 1
y = (x + 1)e–x
उत्तर
सही उत्तर y = xe–x है।
व्याख्या:
दिया गया अवकल समीकरण है `("dy")/("d"x) + "y" = "e"^-x`
क्योंकि, यह एक रैखिक अवकल समीकरण है
∴ P = 1 और Q = e–x
∴ I.F = `"e"^(int 1."d"x)` = ex
तो, हल `"y" xx "I"."F". = int "Q". "I"."F". "d"x + "c"` है।
⇒ `"y" . "e"^x = int"e"^-x . "e"^x "d"x + "c"`
⇒ `"y" . "e"^x = int 1."d"x + "c"`
⇒ `"y" . "e"^x + "c"`
x = 0, y = 0 रखिए
हमें 0 = 0 + c प्राप्त होता है।
∴ c = 0
तो, हल `"y" "e"^x` = x है।
⇒ y = `x . "e"^-x`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + y/x + x^2`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + (sec x)y = tan x (0 <= x <= pi/2)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x log x dy/dx + y = 2/x log x`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
(1 + x2)dy + 2xy dx = cot x dx (x ≠ 0)
एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए।
अवकल समीकरण `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` की घात है
अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।
F(x, y) = `(x^2 + y^2)/(x - y)` कोटि 1 का समघातीय फलन है।
वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं।
`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।
(x + y) (dx – dy) = dx + dy को हल कीजिए। [संकेत : dx और dy को पृथक करने के पश्चात x + y = z रखिए ]
`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।
(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।
`x ("dy")/("d"x) = "y" (log "y" – log x + 1)` को हल कीजिए।
अवकल समीकरण `(("d"^2"y")/("d"x^2))^2 + (("dy")/("d"x))^2 = xsin(("dy")/("d"x))` की घात है
अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है
अवकल समीकरण `cosx ("dy")/("d"x) + "y"sinx` = 1 का समाकलन गुणक है।
tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?
`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है
वह वक्र जिसके लिए किसी बिंदु पर स्पर्श रेखा की प्रवणता उस बिंदु के x-अक्ष (भुज) तथा y-अक्ष (कोटि) के अनुपात के बराबर है वह है
`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है
अवकल समीकरण `("d"^2"y")/("d"x^2) + "e"^(("dy")/("d"x))` = 0 की घात ______ है।
`("d"x)/("d"x) + "P"_1x = "Q"_1` प्रकार के अवकल समीकरण का व्यापक हल ______ है।
`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।
अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।
अवकल समीकरण `("d"x)/("dy") + "P"_1x = "Q"_1` के समाकलन गुणक को `"e"^(int "P"_1"dy")` से लिखा जाता है।
द्वितीय कोटि के अवकल समीकरण के विशिष्ट हल में स्वेच्छ अचरों की संख्या ं
दो होती है।