हिंदी

अवकल समीकरण dydycosxdydx+ysinx = 1 का समाकलन गुणक है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

अवकल समीकरण `cosx ("dy")/("d"x) + "y"sinx` = 1 का समाकलन गुणक है।

विकल्प

  • cosx

  • tanx

  • secx

  • sinx

MCQ

उत्तर

सही उत्तर secx है।

 व्याख्या:

दिया गया अवकल समीकरण है

`cos x * ("dy")/("d"x) + "y" sinx` = 1

⇒ `("dy")/("d"x) + sinx/cosx "y" = 1/cosx`

⇒ `("dy")/("d"x) + tan x  "y" = secx`

यहाँ, P = tan x और Q = sec x

∴ समाकलन गुणक = `"e"^(int Pdx)`

= `"e"^(int tan x "d"x)`

= `"e"^(log secx)`

= sec x.

shaalaa.com
अवकल समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १९२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 9 अवकल समीकरण
प्रश्नावली | Q 40 | पृष्ठ १९२

संबंधित प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

(x + y) dy + (x – y) dx = 0; y = 1; यदि x = 1


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x log x dy/dx + y = 2/x log x`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

y dx + (x – y2)dy = 0


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।


अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।


वक्रों के कुल y = A sinx + B cosx को निरूपित करने वाला अवकल समीकरण ______ है।


जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।


`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।


`"dy"/"dx" + "a"y` = emx का व्यापक हल ज्ञात कीजिए।


उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।


`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।


Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए।


(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।


बिंदु (1, 0) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `("y" - 1)/(x^2 + x)` है।


y = Acos αx + Bsin αx जहाँ A और B स्वेछ अचर हैं के लिए अवकल समीकरण है


`(x"dy")/("d"x) - "y" = x^4 - 3x`  का समाकलन गुणक है:


अवकल समीकरण `"y" ("dy")/("d"x) + "c"` निरूपित करता है


अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है


y = aemx+ be–mx निम्न में से किस अवकल समीकरण को संतुष्ट करता है


वह वक्र जिसके लिए किसी बिंदु पर स्पर्श रेखा की प्रवणता उस बिंदु के x-अक्ष (भुज) तथा y-अक्ष (कोटि) के अनुपात के बराबर है वह है


अवकल समीकरण `(("d"^3"y")/("d"x^3))^2 - 3 ("d"^2"y")/("d"x^2) + 2(("dy")/("d"x))^4` = y4 की कोटि तथा घात क्रमश: है


वक्र कुल  y2 = 4a(x + a) का अवकल समीकरण है


अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।


`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।


वृत्तों के कुल x2 + (y – a)2 = aको निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।


`("dy")/("d"x) = ("y"/x)^(1/3)` का हल  `"y"^(2/3) - x^(2/3)` = c है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×