Advertisements
Advertisements
प्रश्न
Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए।
उत्तर
दिया गया है कि Ax2 + By2 = 1
विभेदक w.r.t. x, हमें प्राप्त होता है।
`2"A" . x + 2"By" "dy"/"dx"` = 0
⇒ `"A"x + "By" . "dy"/"dx"` = 0
⇒ `"By" . "dy"/"dx"` = – Ax
∴ `"y"/x * "dy"/"dx" = - "A"/"B"`
पुन: दोनों पक्षों का x के सापेक्ष अवकलन करने पर हमें प्राप्त होता है
`"y"/x * ("d"^2"y")/("d"x^2) + "dy"/"dx"((x * "dy"/"dx" - "y".1)/x^2)` = 0
⇒ `("y"x^2)/x * ("d"^2"y")/("d"x^2) + x * ("dy"/"dx")^2 - "y" * "dy"/"dx"` = 0
⇒ `x"y" * ("d"^2"y")/("d"x^2) + x * ("dy"/"dx")^2 - "y" * "dy"/"dx"` = 0
⇒ `x"y" * "y""''" + x*("y""'")^2 - "y"*"y""'"` = 0
इसलिए, वाँछित हल `xy * "y""''" + x*("y""'")^2 - "y"*"y""'"` = 0 है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + 3y = e^(- 2x)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x log x dy/dx + y = 2/x log x`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
y dx + (x – y2)dy = 0
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`dy/dx + 2 y tan x = sin x`; y = 0 यदि x = `pi/4`
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`(1 + x^2) dy/dx + 2xy = 1/(1 + x^2); y = 0` यदि x = 1
अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।
`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।
अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है
अवकल समीकरण `2x * "dy"/"dx" y` = 3 का हल किस कुल को निरूपित करता है?
अवकल समीकरण tan x dx + tan y dy = 0 के विशिष्ट हल में स्वेच्छ अचरों की संख्या ______ है।
दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।
F(x, y) = `(x^2 + y^2)/(x - y)` कोटि 1 का समघातीय फलन है।
दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।
अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।
ydx – xdy = x2 ydx को हल कीजिए।
`(x + 2"y"^3) "dy"/"dx"` = y का व्यापक हल ज्ञात कीजिए।
उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।
`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।
y = Acos αx + Bsin αx जहाँ A और B स्वेछ अचर हैं के लिए अवकल समीकरण है
अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।
अवकल समीकरण `"y" ("dy")/("d"x) + "c"` निरूपित करता है
`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0 का हल है
वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है
वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है
अवकल समीकरण जिसका एक हल y = acosx + bsinx है
अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है
`("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक ______ है।
वक्रों के कुल y = ex (Acosx + Bsinx) को निरूपित करने वाला अवकल समीकरण `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y"` = 0 है।
एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल
समीकरण `("d"^2x)/("dy"^2)` = 0 है।