English

Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए। - Mathematics (गणित)

Advertisements
Advertisements

Question

Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए।

Sum

Solution

दिया गया है कि Ax2 + By2 = 1

विभेदक w.r.t. x, हमें प्राप्त होता है।

`2"A"  . x + 2"By"  "dy"/"dx"` = 0

⇒ `"A"x + "By"  . "dy"/"dx"` = 0

⇒ `"By" . "dy"/"dx"` = – Ax

∴ `"y"/x * "dy"/"dx" = - "A"/"B"`

पुन: दोनों पक्षों का x के सापेक्ष अवकलन करने पर हमें प्राप्त होता है

`"y"/x * ("d"^2"y")/("d"x^2) + "dy"/"dx"((x * "dy"/"dx" - "y".1)/x^2)` = 0

⇒ `("y"x^2)/x * ("d"^2"y")/("d"x^2) + x * ("dy"/"dx")^2 - "y" * "dy"/"dx"` = 0

⇒ `x"y" * ("d"^2"y")/("d"x^2) + x * ("dy"/"dx")^2 - "y" * "dy"/"dx"` = 0

⇒ `x"y" * "y""''" + x*("y""'")^2 - "y"*"y""'"` = 0

इसलिए, वाँछित हल `xy * "y""''" + x*("y""'")^2 - "y"*"y""'"` = 0 है।

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - प्रश्नावली [Page 190]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 9 अवकल समीकरण
प्रश्नावली | Q 22 | Page 190

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

(x + y) dy + (x – y) dx = 0; y = 1; यदि x = 1


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x log x dy/dx + y = 2/x log x`


अवकल समीकरण x`dy/dx - y = 2x^2` का समाकलन गुणक है:


मूल बिंदु से गुजरने वाली सरल रेखाओं के कुल का अवकल समीकरण ज्ञात कीजिए।


एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए। 


अवकल समीकरण `2x * "dy"/"dx" y` = 3 का हल किस कुल को निरूपित करता है?


अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है


अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है


अवकल समीकरण tan x dx + tan y dy = 0 के विशिष्ट हल में स्वेच्छ अचरों की संख्या ______ है।


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।


F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।


अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।


यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का  y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`


`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।


(x + y) (dx – dy) = dx + dy को हल कीजिए। [संकेत : dx और dy को पृथक करने के पश्चात x + y = z रखिए ]


`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।


(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।


`("dy")/("d"x) = cos(x + "y") + sin(x + "y")` को हल कीजिए [संकेत : x + y = z रखिए]


मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।


अवकल समीकरण `(("d"^2"y")/("d"x^2))^2 + (("dy")/("d"x))^2 = xsin(("dy")/("d"x))` की घात है


यदि y = e–x (Acosx + Bsinx) तब y एक हल है


अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।


ex cosy dx – ex siny dy = 0 का व्यापक हल है


`x ("dy")/("d"x) + "y"` = ex का हल है


समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है


अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।


`x("dy")/("d"x) = "y" + x tan  "y"/x` का हल `sin("y"/x)` = cx है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×