Advertisements
Advertisements
Question
(x + y) (dx – dy) = dx + dy को हल कीजिए। [संकेत : dx और dy को पृथक करने के पश्चात x + y = z रखिए ]
Solution
दिया गया अवकल समीकरण (x + y)(dx – dy) = dx + dy है।
⇒ (x + y) dx – (x + y) dy = dx + dy
⇒ – (x + y) dy – dy = dx – (x + y)dx
⇒ – (x + y + 1) dy = – (x + y – 1)dx
⇒ `"dy"/"dx" = (x + y - 1)/(x + y + 1)`
x + y = z रखिए
∴ `1 + "dy"/"dx" = "dz"/"dx"`
`"dy"/"dx" = "dz"/"dx" - 1`
तो, `"dz"/"dx" - 1 = (" z" - 1)/("z" + 1)`
⇒ `"dz"/"dx" = ("z" - 1)/("z" + 1) + 1`
⇒ `"dz"/"dx" = ("z" - 1 + "z" + 1)/("z" + 1)`
⇒ `"dz"/"dx" = (2"z")/("z" + 1)`
⇒ `("z" + 1)/"z" "dz"` = 2 . dx
दोनों पक्षों को जोड़ने पर, हम प्राप्त करते हैं
`int ("z" + 1)/"z" "dz" = 2 int "d"x`
⇒ `int(1 + 1/2) "dz" = 2int "d"x`
⇒ `"z" + log|"z"| = 2x + log|"c"|`
⇒ `x + "y" + log|x + "y"| = 2x + log|"c"|`
⇒ `"y" + log|x + "y"| = x + log |"c"|`
⇒ `log|x + "y"| = x - "y" + log|"c"|`
⇒ `log|x + "y"| - log|"c"| = (x - "y")`
⇒ `log|(x + "y")/"c"| = (x - "y")`
⇒ `(x + "y")/"c" = "e"^(x - "y")`
∴ x + y = `"c" . "e"^(x - "y")`
अत: वाँछित हल x + y = `"c" . "e"^(x - "y")` है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + y/x + x^2`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x log x dy/dx + y = 2/x log x`
अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।
बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।
बताइए कि समीकरण xdy – ydx = `sqrt(x^2 + "y"^2) "d"x` किस प्रकार का अवकल समीकरण है तथा इसे हल कीजिए।
अवकल समीकरण `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` की घात है
अवकल समीकरण `2x * "dy"/"dx" y` = 3 का हल किस कुल को निरूपित करता है?
अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है
निम्न में से कौन सा x और y में समघातीय फलन नहीं है।
अवकल समीकरण `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।
अवकल समीकरण `"dy"/"dx" - y` = cos x is ex का समाकलन गुणक ex है।
एक तल में सभी रेखाएँ जो ऊर्ध्वाधर नहीं हैं के लिए अवकल समीकरण ज्ञात कीजिए।
अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।
अवकल समीकरण `"dy"/"dx" + 2x"y"` = y को हल कीजिए।
`(x + 2"y"^3) "dy"/"dx"` = y का व्यापक हल ज्ञात कीजिए।
वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं।
अवकल समीकरण `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0 का व्यापक हल ज्ञात कीजिए।
बिंदु (1, 1) से गुजरने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु P (x, y) से खींची गई स्पर्श रेखा, निर्देशांक अक्षों से A और B पर इस प्रकार मिलती है कि AB का मध्य बिंदु P है।
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^(1/4) + x^(1/5)` = 0, के कोटि और घात क्रमश: हैं
`("dy")/("d"x) = ("y" + 1)/(x - 1)`, जब y (1) = 2 है के हलों की संख्या है।
अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है
y = aemx+ be–mx निम्न में से किस अवकल समीकरण को संतुष्ट करता है
`x ("dy")/("d"x) + "y"` = ex का हल है
`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है
अवकल समीकरण `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"` का हल है
`("d"x)/("d"x) + "P"_1x = "Q"_1` प्रकार के अवकल समीकरण का व्यापक हल ______ है।
अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।
`("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक ______ है।
`("d"x)/("dy") + "p"_1x = "Q"_1` प्रकार के अवकल समीकरण के हल को x.I.F. = `("I"."F") xx "Q"_1"dy"` द्वारा दिया जाता है।