English

अवकल समीकरण dydeyeydydx=ex-y+x2e-y का हल है - Mathematics (गणित)

Advertisements
Advertisements

Question

अवकल समीकरण  `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"` का हल है

Options

  • y =`"e"^(x - "y") = x^2 "e"^-"y" + "c"`

  • `"e"^"y" - "e"^x = x^3/3 + "c"`

  • `"e"^x + "e"^"y" = x^3/3 + "c"`

  • `"e"^x - "e"^"y" = x^3/3 + "c"`

MCQ

Solution

सही उत्तर `underline("e"^"y" - "e"^x = x^3/3 + "c")` है।

व्याख्या:

दिया गया अवकल समीकरण `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"`  है।

⇒ `("dy")/("d"x) = "e"^x . "e"^-"y" + x^2 . "e"^-"y"`

⇒ `("dy")/("d"x) = "e"^-"y" ("e"^x + x^2)`

⇒ `("dy")/"e"^-"y" = ("e"^x + x^2)"d"x`

⇒ `"e"^"y" . "dy" = ("e"^x + x^2)"d"x`

दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है

`int "e"^x  "dy" = int ("e"^x + x^2)  "d"x`

⇒ `"e"^"y" = "e"^x + x^3/3 + "c"`

⇒ `"e"^"y" - "e"^x = x^3/3 + "c"`

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - प्रश्नावली [Page 196]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 9 अवकल समीकरण
प्रश्नावली | Q 74 | Page 196

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + (sec x)y = tan x (0 <= x <= pi/2)`


अवकल समीकरण `(1 - y^2)  dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:


निम्नलिखित अवकल समीकरण में से कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।

`(d^2y)/dx^2 + 5x(dy/dx)^2 - 6y = log x`


उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता `"y" + "y"/x` है।


अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)`  के क्रमशः कोटि और घात हैं


अवकल समीकरण `2x * "dy"/"dx" y` = 3 का हल किस कुल को निरूपित करता है?


अवकल समीकरण  `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।


वक्रों के कुल y = A sinx + B cosx को निरूपित करने वाला अवकल समीकरण ______ है।


अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।


F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।


अवकल समीकरण `"y"^2 "dy"/"dx" + "y"^2 + 1` = 0 का एक हल x + y = tan–1y है।


एक तल में सभी रेखाएँ जो ऊर्ध्वाधर नहीं हैं के लिए अवकल समीकरण ज्ञात कीजिए।


अवकल समीकरण `"dy"/"dx" + 1` = ex + y को हल कीजिए।


`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।


(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।


अवकल समीकरण `(("d"^2"y")/("d"x^2))^2 + (("dy")/("d"x))^2 = xsin(("dy")/("d"x))` की घात है


y = Acos αx + Bsin αx जहाँ A और B स्वेछ अचर हैं के लिए अवकल समीकरण है


अवकल समीकरण `(1 - x^2) ("dy")/("d"x) - x"y"` = 1 का समाकलन गुणक है


अवकल समीकरण `("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक है


y = aemx+ be–mx निम्न में से किस अवकल समीकरण को संतुष्ट करता है


अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है


अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है


अवकल समीकरण `("d"^2"y")/("d"x^2) + "e"^(("dy")/("d"x))` = 0 की घात ______ है।


वृत्तों के कुल x2 + (y – a)2 = aको निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।


एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल

समीकरण `("d"^2x)/("dy"^2)` = 0 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×