English

अवकल समीकरण (1-y2) dydx+yx=ay(-1<y<1) का समाकलन गुणक है: - Mathematics (गणित)

Advertisements
Advertisements

Question

अवकल समीकरण `(1 - y^2)  dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:

Options

  • `1/("y"^2 - 1)`

  • `1/sqrt("y"^2 - 1)`

  • `1/(1 - "y"^2)`

  • `1/sqrt(1 - "y"^2)`

MCQ

Solution

`1/sqrt(1 - y^2)`

स्पष्टीकरण:

अवकल समीकरण है,

`(1 – y^2)dy/dx + yx = ay`

या `dx/dy + y/(1 - y^2) x = y/(1 - y^2)`

`dx/dy + Px = Q` से तुलना करने पर,

`P = y/(1 - y^2), Q = y/(1 - y^2)`

`int P dx = int y/(1 - y^2)  dy`

`= e^(- 1/2 int (- 2y)/(1 - y^2) dy)`

माना `= - 1/2 int (- 2y)/(1 - y^2)  dy`

`1 - y^2` = t

∴ - 2y dy = dt

`= - 1/2 int dt/t = - 1/2 log t`

`= - 1/2 log (1 - y^2)`

`= log  1/sqrt(1 - y^2)`

`I.F. = e^(int P dx) = e^(log 1 sqrt(1 - y^2))`

`= 1/sqrt(1 - y^2)`

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - प्रश्नावली 9.6 [Page 430]

APPEARS IN

NCERT Mathematics - Part 1 and 2 [Hindi] Class 12
Chapter 9 अवकल समीकरण
प्रश्नावली 9.6 | Q 19. | Page 430

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`cos^2 x dy/dx + y = tan x (0 <= x < pi/2)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`(x + y) dy/dx = 1`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`dy/dx + 2  y tan x = sin x`; y = 0 यदि x = `pi/4`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`(1 + x^2) dy/dx + 2xy = 1/(1 + x^2); y = 0` यदि x = 1


अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है


अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)`  के क्रमशः कोटि और घात हैं


अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।


दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।


अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।


अवकल समीकरण `"dy"/"dx" - y` = cos x is ex का समाकलन गुणक ex है।


अवकल समीकरण  x(1 + y2)dx + y(1 + x2)dy = 0 का व्यापक हल (1 + x2)(1 + y2) = k है।


अवकल समीकरण `"dy"/"dx" + 2x"y"` = y को हल कीजिए।


`"dy"/"dx" + "a"y` = emx का व्यापक हल ज्ञात कीजिए।


यदि y (x) समीकरण `((2 + sinx)/(1 + "y"))"dy"/"dx"` = – cosx  का हल है और y (0) = 1, है तब  `"y"(pi/2)` का मान ज्ञात कीजिए।


यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का  y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`


उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।


उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।


अवकल समीकरण `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0 का व्यापक हल ज्ञात कीजिए।


बिंदु (1, 1) से गुजरने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु P (x, y) से खींची गई स्पर्श रेखा, निर्देशांक अक्षों से A और B पर इस प्रकार मिलती है कि AB का मध्य बिंदु P है।


यदि y = e–x (Acosx + Bsinx) तब y एक हल है


y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है


अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है


`x ("dy")/("d"x) + "y"` = ex का हल है


अवकल समीकरण  `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है


समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है


अवकल समीकरण जिसका एक हल y = acosx + bsinx है


अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।


`("d"x)/("dy") + "p"_1x = "Q"_1` प्रकार के अवकल समीकरण के हल को x.I.F. = `("I"."F") xx "Q"_1"dy"` द्वारा दिया जाता है।


 `("dy")/("d"x) = "f"(x, "y")` जहाँ f (x, y) एक शून्य घात वाला समघातीय फलन है, को हल करने के लिए सही प्रतिस्थापन y = vx है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×