Advertisements
Advertisements
Question
यदि y = e–x (Acosx + Bsinx) तब y एक हल है
Options
`("d"^2"y")/("d"x^2) + 2("dy")/("d"x)` = 0
`("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y" ` = 0
`("d"^2"y")/("d"x^2) + 2 ("dy")/("d"x) + 2"y"` = 0
`("d"^2"y")/("d"x^2) + 2"y"` = 0
Solution
सही उत्तर `underline(("d"^2"y")/("d"x^2) + 2 ("dy")/("d"x) + 2"y" = 0)` है।
व्याख्या:
दिया गया समीकरण y = e–x (Acosx + Bsinx) है
दोनों पक्षों का x के सापेक्ष अवकलन करने पर हमें प्राप्त होता है।
`("dy")/("d"x)` = e–x (–A sin x + B cos x) – e–x (A cos x + B sin x)
`("dy")/("d"x)` = e–x (–A sin x + B cos x) – y
पुन: दोनों पक्षों का x के सापेक्ष अवकलन करने पर हमें प्राप्त होता है।
`("d"^2"y")/("d"x^2) = "e"^-x (-"A" cos x - "B" sin x) - "e"^-x (-"A" sinx + "B"cosx) - ("dy")/("d"x)`
⇒ `("d"^2"y")/("d"x^2) = -"e"^-x ("A" cosx + "B" sinx) - [("dy")/("d"x) + "y"] - ("dy")/("d"x)`
⇒ `("d"^2"y")/("d"x^2) = - "y" - ("dy")/("d"x) - "y" - ("dy")/("d"x)`
⇒ `("d"^2"y")/("d"x^2) = - 2 ("dy")/("d"x) - 2"y"`
⇒ `("d"^2"y")/("d"x^2) + 2("dy")/("d"x) + 2"y"` = 0
APPEARS IN
RELATED QUESTIONS
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x log x dy/dx + y = 2/x log x`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`(x + y) dy/dx = 1`
अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।
एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए।
अवकल समीकरण `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` की घात है
अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)` के क्रमशः कोटि और घात हैं
अवकल समीकरण `x "dt"/"dx" + 2"y"` = x2 का हल है
अवकल समीकरण `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 की घात ______ हैं।
अवकल समीकरण `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।
जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।
अवकल समीकरण `("d"^2"y")/("d"x^2) - x^2 "dy"/"dx" + x"y"` = x का एक विशिष्ट हल y = x है।
यदि y (x) समीकरण `((2 + sinx)/(1 + "y"))"dy"/"dx"` = – cosx का हल है और y (0) = 1, है तब `"y"(pi/2)` का मान ज्ञात कीजिए।
`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।
`("dy")/("d"x) = cos(x + "y") + sin(x + "y")` को हल कीजिए [संकेत : x + y = z रखिए]
मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।
`x ("dy")/("d"x) = "y" (log "y" – log x + 1)` को हल कीजिए।
अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।
`("dy")/("d"x) = ("y" + 1)/(x - 1)`, जब y (1) = 2 है के हलों की संख्या है।
अवकल समीकरण `(1 - x^2) ("dy")/("d"x) - x"y"` = 1 का समाकलन गुणक है
tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?
वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है
वक्र कुल y2 = 4a(x + a) का अवकल समीकरण है
अवकल समीकरण `("d"^2"y")/("d"x^2) + "e"^(("dy")/("d"x))` = 0 की घात ______ है।
`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।
अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।
`("dy")/("d"x) = ("y"/x)^(1/3)` का हल `"y"^(2/3) - x^(2/3)` = c है।
एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल
समीकरण `("d"^2x)/("dy"^2)` = 0 है।