English

Dydyydydx=cos(x+y)+sin(x+y) को हल कीजिए [संकेत : x + y = z रखिए] - Mathematics (गणित)

Advertisements
Advertisements

Question

`("dy")/("d"x) = cos(x + "y") + sin(x + "y")` को हल कीजिए [संकेत : x + y = z रखिए]

Sum

Solution

दिया गया है कि: `("dy")/("d"x) = cos(x + "y") + sin(x + "y")`

x को अवकलित करने पर x + y = v हमें प्राप्त होता है,

`1 + ("dy")/("d"x) = "dv"/"dx"`

∴ `("dy")/("d"x) = "dv"/"dx" - 1`

∴ `"dv"/"dx" - 1` = cos v + sin v

⇒ `"dv"/"dx"` = cos v + sin v + 1

⇒ `"dv"/(cos"v" + sin"v" + 1)` = dx

दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है

`int "dv"/(cos"v" + sin"v" + 1) = int 1 . "d"x`

⇒ `int  "dv"/(((1 - tan^2  "v"/2)/(1 + tan^2  "v"/2) + (2tan  "v"/2)/(1 + tan^2  "v"/2) + 1)) = int 1. "d"x`

⇒ `int ((1 + tan^2  "v"/2))/(1 - tan^2  "v"/2 + 2 tan  "v"/2 + 1 + tan^2  "v"/2) "dv" = int 1."d"x`

⇒ `int (sec^2  "v"/2)/(2 + 2 tan  "v"/2) "dv" = int 1."d"x`

`2 + 2 tan  "v"/2` = t रखिए

`2 * 1/2 sec^2  "v"/2 "dv"` = dt

⇒ `sec^2  "v"/2 "dv"` = dt

⇒ `int "dt"/"t" = int 1."d"x`

⇒ `log|"t"|` = x + c

⇒ `log|2 + 2 tan  "v"/2|` = x + c

⇒ `log|2 + 2tan((x + "y")/2)| ` = x + c

⇒ `log2 [1 + tan((x + "y")/2)]` = x + c

⇒ `log2 + log[1 + tan ((x + "y")/2)]` = x + c

⇒ `log[1 + tan((x + "y")/2)]` = x + c – log 2

इसलिए, वाँछित हल `log[1 + tan((x + "y")/2)]` = x + K  ....[c – log 2 = K] है।

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - प्रश्नावली [Page 190]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 9 अवकल समीकरण
प्रश्नावली | Q 27 | Page 190

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

y dx + (x – y2)dy = 0


अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।


अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है


अवकल समीकरण `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 की घात ______ हैं।


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।


अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।


अवकल समीकरण `"y"^2 "dy"/"dx" + "y"^2 + 1` = 0 का एक हल x + y = tan–1y है।


अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।


उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।


उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।


अवकल समीकरण (1 + y2) tan–1xdx + 2y(1 + x2) dy = 0 को हल कीजिए।


केंद्र (1, 2) वाले सभी सकेंद्री वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।


`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।


मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।


बिंदु (1, 1) से गुजरने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु P (x, y) से खींची गई स्पर्श रेखा, निर्देशांक अक्षों से A और B पर इस प्रकार मिलती है कि AB का मध्य बिंदु P है।


अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है


`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है


tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?


अवकल समीकरण `"y" ("dy")/("d"x) + "c"` निरूपित करता है


अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है


अवकल समीकरण `("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक है


अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है


वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है


अवकल समीकरण `(("d"^3"y")/("d"x^3))^2 - 3 ("d"^2"y")/("d"x^2) + 2(("dy")/("d"x))^4` = y4 की कोटि तथा घात क्रमश: है


वक्र कुल  y2 = 4a(x + a) का अवकल समीकरण है


 `("dy")/("d"x) = "f"(x, "y")` जहाँ f (x, y) एक शून्य घात वाला समघातीय फलन है, को हल करने के लिए सही प्रतिस्थापन y = vx है।


`("d"x)/("dy") = "g"(x, "y")` जहाँ g (x, y) एक शून्य घात वाला समघातीय फलन है, प्रकार के अवकल समीकरण को हल करने के लिए सही प्रतिस्थापन x = vy है।


अवकल समीकरण `("dy")/("d"x) = (x + 2"y")/x` का हल x + y = kx2 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×