English

अवकल समीकरण dydydydx+1+y21+x2 का हल है - Mathematics (गणित)

Advertisements
Advertisements

Question

अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है

Options

  • y = tan–1x

  • y – x = k (1 + xy)

  • x = tan–1y

  • tan (xy) = k

MCQ

Solution

सही उत्तर y – x = k (1 + xy) है।

व्याख्या:

दिया गया अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)`

⇒ `("dy")/(1 + "y"^2) = ("d"x)/(1 + x^2)` है।

दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है

`int ("dy")/(1 + "y"^2) = int ("d"x)/(1 + x^2)`

⇒ tan–1y = tan–1x + c

⇒ tan–1y – tan–1x = c

⇒ `tan^-1(("y" - x)/(1 + x"y"))` = c

⇒ `("y" - x)/(1 + x"y")` = tan c

⇒ `(("y" - x)/(1 + x"y"))` = k  ....[k = tan c]

⇒ y – x = k(1 + xy)

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - प्रश्नावली [Page 193]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 9 अवकल समीकरण
प्रश्नावली | Q 54 | Page 193

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

y dx + (x – y2)dy = 0


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`(1 + x^2) dy/dx + 2xy = 1/(1 + x^2); y = 0` यदि x = 1


अवकल समीकरण x`dy/dx - y = 2x^2` का समाकलन गुणक है:


वक्रों के कुल y = Ae2x + B.e–2x के लिए अवकल समीकरण ज्ञात कीजिए।


उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता `"y" + "y"/x` है।


बताइए कि समीकरण xdy – ydx = `sqrt(x^2 + "y"^2)  "d"x` किस प्रकार का अवकल समीकरण है तथा इसे हल कीजिए। 


अवकल समीकरण `2x * "dy"/"dx" y` = 3 का हल किस कुल को निरूपित करता है?


निम्न में से कौन सा x और y में समघातीय फलन नहीं है।


अवकल समीकरण `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 की घात ______ हैं।


अवकल समीकरण tan x dx + tan y dy = 0 के विशिष्ट हल में स्वेच्छ अचरों की संख्या ______ है।


अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।


अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।


`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।


यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का  y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`


`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।


मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।


अवकल समीकरण `(("d"^2"y")/("d"x^2))^2 + (("dy")/("d"x))^2 = xsin(("dy")/("d"x))` की घात है


अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^(1/4) + x^(1/5)` = 0, के कोटि और घात क्रमश: हैं


अवकल समीकरण `cosx ("dy")/("d"x) + "y"sinx` = 1 का समाकलन गुणक है।


`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है


निम्न से कौन सा अवकल समीकरण कोटि 2 का है?


अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है


`x ("dy")/("d"x) + "y"` = ex का हल है


अवकल समीकरण  `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है


`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।


अवकल समीकरण `("d"x)/("dy") + "P"_1x = "Q"_1` के समाकलन गुणक को `"e"^(int "P"_1"dy")` से लिखा जाता है।


`("d"x)/("dy") = "g"(x, "y")` जहाँ g (x, y) एक शून्य घात वाला समघातीय फलन है, प्रकार के अवकल समीकरण को हल करने के लिए सही प्रतिस्थापन x = vy है।


वक्रों के कुल y = ex (Acosx + Bsinx)  को निरूपित करने वाला अवकल समीकरण `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y"` = 0  है।


`x("dy")/("d"x) = "y" + x tan  "y"/x` का हल `sin("y"/x)` = cx है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×