English

Dydydydx+y = sinx का व्यापक हल ______ है। - Mathematics (गणित)

Advertisements
Advertisements

Question

`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।

Fill in the Blanks

Solution

`("dy")/("d"x) + "y"` = sinx का व्यापक हल `underline("y" = ((sinx - cosx)/2) + "c"."e"^-x)` है।

व्याख्या:

दिया गया अवकल समीकरण `("dy")/("d"x) + "y"`  = sinx

क्योंकि, यह एक रैखिक अवकल समीकरण है।

∴ P = 1 और Q = sinx

समाकलन गुणक I.F. = `"e"^(int"Pdx")`

= `"e"^(int1."d"x)`

= ex

∴ हल `"y" xx "i"."F". = int "Q" xx "I"."F". "D"x + "C"` है।

⇒ `"y" . "e"^x = int sin x . "e"6x "d"x + "c"`  ....(1)

मान लीजिए  I = `int sin_"I"x . "e"_"II"^x "d"x`

I = `sin x . int "e"^x  "d"x - int ("D"(sinx) . int"e"^x "d"x)"d"x`

I = `sinx . "e"^x - int cos_"I"x . "e"_"II"^x  "d"x`

I = `sinx . "e"^x - [cosx . int "e"^x "d"x - int ("D"(cosx) int"e"^x "d"x)"d"x]`

I = `sin x . "e"6x - [cosx . "e"^x - int - sin x . "e"^x "d"x]`

I = `sin x . "e"^x - cos x . "e"^x - int sin x . "e"^x "d"x`

I = `sin x . "e"^x - cos x . "e"^x - "I"`

⇒ I + I = `"e"^x (sin x - cos x)`

⇒ 2I = `"e"^x (sinx - cosx)`

∴ I = `"e"^x/2 (sinx - cosx)`

समीकरण (1) से हम प्राप्त करते हैं।

`"y" . "e"^x = "e"^x/2 (sinx - cosx) + "c"`

y = `((sinx - cosx)/2) + "c" . "e"^-x`

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - प्रश्नावली [Page 197]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 9 अवकल समीकरण
प्रश्नावली | Q 76. (ix) | Page 197

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`cos^2 x dy/dx + y = tan x (0 <= x < pi/2)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`xdy/dx + 2y = x^2 log x`


अवकल समीकरण `(1 - y^2)  dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:


अवकल समीकरण `"dy"/"dx"` = yex,  x = 0, y = e में y का मान बताएं जब x = 1


उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता `"y" + "y"/x` है।


बिंदु 1,`pi/4` से जाने वाले वक् का समीकरण ज्ञात कीजिए यदि किसी बिंदु P (x, y) पर वक्र की स्पर्श रेखा की प्रवणता `"y"/x - cos^2"y"/x` है।


दी गई त्रिज्या a के सभी वृत्तों के अवकल समीकरण की कोटि है


निम्न में से कौन सा x और y में समघातीय फलन नहीं है।


अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।


अवकल समीकरण  `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।


वक्रों के कुल y = A sinx + B cosx को निरूपित करने वाला अवकल समीकरण ______ है।


`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।


दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।


अवकल समीकरण  `"dy"/"dx"` = 1 + x + y2 + xy2,  को हल कीजिए जब y = 0, x = 0


उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।


अवकल समीकरण (1 + y2) tan–1xdx + 2y(1 + x2) dy = 0 को हल कीजिए।


केंद्र (1, 2) वाले सभी सकेंद्री वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।


(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।


अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^(1/4) + x^(1/5)` = 0, के कोटि और घात क्रमश: हैं


अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।


`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0  का हल है


अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है


अवकल समीकरण `("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक है


अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है


अवकल समीकरण जिसका एक हल y = acosx + bsinx है


कोटि तीन के अवकल समीकरण के व्यापक हल में स्वेच्छ अचरों की संख्या ______ है।


`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।


अवकल समीकरण `("dy")/("d"x) = (x + 2"y")/x` का हल x + y = kx2 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×