English

अवकल समीकरण dydydydx=x+2yx का हल x + y = kx2 है। - Mathematics (गणित)

Advertisements
Advertisements

Question

अवकल समीकरण `("dy")/("d"x) = (x + 2"y")/x` का हल x + y = kx2 है।

Options

  • सत्य 

  • असत्य

MCQ
True or False

Solution

यह कथन सत्य है।

व्याख्या:

दिया गया अवकल समीकरण `("dy")/("d"x) = (x + 2"y")/x` है।

⇒ `("dy")/("d"x) = 1 + 2 "y"/x`

⇒ `("dy")/("d"x) = (2"y")/x` = 1

यहाँ, P = `(-2)/x` और Q = 1

समाकलन गुणक I.F. = `"e"^(int(-2)/x "d"x)`

= `"e"^(-2 log x)`

= `"e"^(log x^-2)`

= `1/x^2`

∴ हल `"y" xx "I"."F". = int "Q" xx "I"."F". "d"x + "c"` है।

⇒ `"y" xx 1/x^2 = int 1 xx 1/x^2 "d"x + "c"`

⇒ `"y"/x^2 = int 1/x^2 "d"x + "c"`

⇒ `"y"/x^2 = - 1/x + "c"`

⇒ y = `-x + "c"x^2`

⇒ y + x = cx2 

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - प्रश्नावली [Page 198]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 9 अवकल समीकरण
प्रश्नावली | Q 77. (ix) | Page 198

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + y/x + x^2`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`(x + 3y^2) dy/dx = y, (y > 0)`


अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।


उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता `"y" + "y"/x` है।


`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।


जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।


`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।


अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।


अवकल समीकरण `("d"^2"y")/("d"x^2) - x^2 "dy"/"dx" + x"y"` = x का एक विशिष्ट हल y = x है।


`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।


ydx – xdy = x2 ydx को हल कीजिए।


उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।


`("dy")/("d"x) -3"y" = sin2x` का व्यापक हल ज्ञात कीजिए।


बिंदु (2, 1) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसका किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता  `(x^2 + "y"^2)/(2x"y")` है।


अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^(1/4) + x^(1/5)` = 0, के कोटि और घात क्रमश: हैं


अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______


अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।


`("dy")/("d"x) = ("y" + 1)/(x - 1)`, जब y (1) = 2 है के हलों की संख्या है।


निम्न से कौन सा अवकल समीकरण कोटि 2 का है?


y = aemx+ be–mx निम्न में से किस अवकल समीकरण को संतुष्ट करता है


अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है


`x ("dy")/("d"x) + "y"` = ex का हल है


`("d"x)/("d"x) + "P"_1x = "Q"_1` प्रकार के अवकल समीकरण का व्यापक हल ______ है।


अवकल समीकरण coty dx = xdy का हल ______ है।


एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल

समीकरण `("d"^2x)/("dy"^2)` = 0 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×