Advertisements
Advertisements
Question
`("d"x)/("d"x) + "P"_1x = "Q"_1` प्रकार के अवकल समीकरण का व्यापक हल ______ है।
Solution
`("d"x)/("d"x) + "P"_1x = "Q"_1` प्रकार के अवकल समीकरण का व्यापक हल `underline(x"e"^(int"Pdx") = int "Q"_1"e"^(int P_1"dy") "dy" + "C")` है।
व्याख्या:
हमें प्राप्त होता है `("d"x)/("d"x) + "P"_1x = "Q"_1`
ऐसे समीकरण को हल करने के लिए हम दोनों पक्षों से गुणा करते हैं
समाकलन गुणक = I.F. = `"e"^(int "Pdx")`
तो हमें `"e"^(int"Pdx") (("d"x)/("dy") + "P"_1x) = "Q"_1"e"^(int"Pdx")` प्राप्त होता है
⇒ `("d"x)/("dy") "e"^(int"Pdx") + "P"_1"e"^(int"Pdy") = "Q"_1"e"^(int"P"_1"dy")`
⇒ `"d"/("dy")(x"e"^(int"P"_1"dy")) = "Q"_1"e"^(int"P"_1"dy")`
⇒ `int "d"/("dy") (x"e"^(int"P"_1"dy"))"dy" = int "Q"_1"e"^(int"P"_1"dy") "dy"`
⇒ `x"e"^(int"P"_1"dy") = int"Q"_1"e"^(int"P"_1"dy") "dy" + "C"`
यह दिए गए अवकल समीकरण का वाँछित हल है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
(x + y) dy + (x – y) dx = 0; y = 1; यदि x = 1
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + 3y = e^(- 2x)`
अवकल समीकरण x`dy/dx - y = 2x^2` का समाकलन गुणक है:
अवकल समीकरण `"dy"/"dx"` = yex, x = 0, y = e में y का मान बताएं जब x = 1
बताइए कि समीकरण xdy – ydx = `sqrt(x^2 + "y"^2) "d"x` किस प्रकार का अवकल समीकरण है तथा इसे हल कीजिए।
दी गई त्रिज्या a के सभी वृत्तों के अवकल समीकरण की कोटि है
अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है
अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है
अवकल समीकरण tan x dx + tan y dy = 0 के विशिष्ट हल में स्वेच्छ अचरों की संख्या ______ है।
अवकल समीकरण `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।
जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।
अवकल समीकरण `("d"^2"y")/("d"x^2) - x^2 "dy"/"dx" + x"y"` = x का एक विशिष्ट हल y = x है।
दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx" + 2x"y"` = y को हल कीजिए।
`(x + 2"y"^3) "dy"/"dx"` = y का व्यापक हल ज्ञात कीजिए।
यदि y (x) समीकरण `((2 + sinx)/(1 + "y"))"dy"/"dx"` = – cosx का हल है और y (0) = 1, है तब `"y"(pi/2)` का मान ज्ञात कीजिए।
`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।
y2dx + (x2 – xy + y2) dy = 0 का व्यापक हल ज्ञात कीजिए।
(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।
मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।
y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है
`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है
अवकल समीकरण `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"` का हल है
अवकल समीकरण `("d"^2"y")/("d"x^2) + "e"^(("dy")/("d"x))` = 0 की घात ______ है।
अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।
`("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक ______ है।
द्वितीय कोटि के अवकल समीकरण के विशिष्ट हल में स्वेच्छ अचरों की संख्या ं
दो होती है।
`("dy")/("d"x) = ("y"/x)^(1/3)` का हल `"y"^(2/3) - x^(2/3)` = c है।