Advertisements
Chapters
2: प्रतिलोम तिरिकोंमितिया फलन
3: आव्यूह
4: सारणिक
5: सांतत्य और अवकलनीयता
6: अवकलज के अनुप्रयोग
7: समाकल
8: स्माकलो के अनुप्रयोग
▶ 9: अवकल समीकरण
10: सदिश बीजगणित
Chapter 11: त्रिविमयि ज्यामिति
Chapter 12: रैखिक प्रोग्रामन
Chapter 13: प्रायिकता
![NCERT Exemplar solutions for Mathematics [Hindi] Class 12 chapter 9 - अवकल समीकरण NCERT Exemplar solutions for Mathematics [Hindi] Class 12 chapter 9 - अवकल समीकरण - Shaalaa.com](/images/mathematics-hindi-class-12_6:5f2b1b2038084cf381bfa42c826a928c.jpg)
Advertisements
Solutions for Chapter 9: अवकल समीकरण
Below listed, you can find solutions for Chapter 9 of CBSE NCERT Exemplar for Mathematics [Hindi] Class 12.
NCERT Exemplar solutions for Mathematics [Hindi] Class 12 9 अवकल समीकरण हल किये हुए उदाहरण [Pages 176 - 187]
लघु उत्तरीय प्रश्न
वक्रों के कुल y = Ae2x + B.e–2x के लिए अवकल समीकरण ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx"` = yex, x = 0, y = e में y का मान बताएं जब x = 1
अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।
मूल बिंदु से गुजरने वाली सरल रेखाओं के कुल का अवकल समीकरण ज्ञात कीजिए।
एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए।
उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता `"y" + "y"/x` है।
दीर्घ उत्तरीय प्रश्न
बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।
बिंदु 1,`pi/4` से जाने वाले वक् का समीकरण ज्ञात कीजिए यदि किसी बिंदु P (x, y) पर वक्र की स्पर्श रेखा की प्रवणता `"y"/x - cos^2"y"/x` है।
`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।
बताइए कि समीकरण xdy – ydx = `sqrt(x^2 + "y"^2) "d"x` किस प्रकार का अवकल समीकरण है तथा इसे हल कीजिए।
वस्तुनिष्ठ प्रश्न 12 से 21 तक
अवकल समीकरण `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` की घात है
1
2
3
4
अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है
1
2
3
परिभाषित नहीं है।
अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)` के क्रमशः कोटि और घात हैं
1, 2
2, 2
2, 1
4, 2
दी गई त्रिज्या a के सभी वृत्तों के अवकल समीकरण की कोटि है
1
2
3
4
अवकल समीकरण `2x * "dy"/"dx" y` = 3 का हल किस कुल को निरूपित करता है?
सरल रेखाओं
वृत्तों
परवलयों
दीर्घ वृत्तों
अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है
ex
log x
log (log x)
x
अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है
y = 2
y = 2x
y = 2x – 4
y = 2x2 – 4
निम्न में से कौन सा x और y में समघातीय फलन नहीं है।
x2 + 2xy
2x – y
`cos^2 (y/x) + y/x`
sinx – cosy
अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है
`1/x + 1/y` = c
logx . logy = c
xy = c
x + y = c
अवकल समीकरण `x "dt"/"dx" + 2"y"` = x2 का हल है
y = `(x^2 + "c")/(4x^2)`
y = `x^2/4 + "c"`
y = `(x^4 + "c")/x^2`
y = `(x^4 + "c")/(4x^2)`
निम्नलिखित में रिक्त स्थानों को भरिए-
परवलयों y2 = 4ax के कुल को निरूपित करने वाले अवकल समीकरण की कोटि ______ है।
अवकल समीकरण `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 की घात ______ हैं।
अवकल समीकरण tan x dx + tan y dy = 0 के विशिष्ट हल में स्वेच्छ अचरों की संख्या ______ है।
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।
अवकल समीकरण `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` को हल करने के लिए उपयुक्त प्रतिस्थापन ______ है।
अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।
अवकल समीकरण `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।
अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।
वक्रों के कुल y = A sinx + B cosx को निरूपित करने वाला अवकल समीकरण ______ है।
जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।
बताइए कि निम्नलिखित कथन सत्य हैं या असत्य हैं-
दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।
सत्य
असत्य
अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।
सत्य
असत्य
`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।
सत्य
असत्य
F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।
सत्य
असत्य
F(x, y) = `(x^2 + y^2)/(x - y)` कोटि 1 का समघातीय फलन है।
सत्य
असत्य
अवकल समीकरण `"dy"/"dx" - y` = cos x is ex का समाकलन गुणक ex है।
सत्य
असत्य
अवकल समीकरण x(1 + y2)dx + y(1 + x2)dy = 0 का व्यापक हल (1 + x2)(1 + y2) = k है।
सत्य
असत्य
अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।
सत्य
असत्य
अवकल समीकरण `"y"^2 "dy"/"dx" + "y"^2 + 1` = 0 का एक हल x + y = tan–1y है।
सत्य
असत्य
अवकल समीकरण `("d"^2"y")/("d"x^2) - x^2 "dy"/"dx" + x"y"` = x का एक विशिष्ट हल y = x है।
सत्य
असत्य
NCERT Exemplar solutions for Mathematics [Hindi] Class 12 9 अवकल समीकरण प्रश्नावली [Pages 188 - 198]
लघु उत्तरीय प्रश्न
`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।
एक तल में सभी रेखाएँ जो ऊर्ध्वाधर नहीं हैं के लिए अवकल समीकरण ज्ञात कीजिए।
दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।
अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।
अवकल समीकरण `"dy"/"dx" + 2x"y"` = y को हल कीजिए।
`"dy"/"dx" + "a"y` = emx का व्यापक हल ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx" + 1` = ex + y को हल कीजिए।
ydx – xdy = x2 ydx को हल कीजिए।
अवकल समीकरण `"dy"/"dx"` = 1 + x + y2 + xy2, को हल कीजिए जब y = 0, x = 0
`(x + 2"y"^3) "dy"/"dx"` = y का व्यापक हल ज्ञात कीजिए।
यदि y (x) समीकरण `((2 + sinx)/(1 + "y"))"dy"/"dx"` = – cosx का हल है और y (0) = 1, है तब `"y"(pi/2)` का मान ज्ञात कीजिए।
यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`
वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं।
उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।
उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।
`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।
अवकल समीकरण `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0 का व्यापक हल ज्ञात कीजिए।
y2dx + (x2 – xy + y2) dy = 0 का व्यापक हल ज्ञात कीजिए।
(x + y) (dx – dy) = dx + dy को हल कीजिए। [संकेत : dx और dy को पृथक करने के पश्चात x + y = z रखिए ]
`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।
अवकल समीकरण dy = cosx(2 – y cosecx) dx को हल कीजिए, दिया है कि x = `pi/2` तब y = 2 है।
Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए।
अवकल समीकरण (1 + y2) tan–1xdx + 2y(1 + x2) dy = 0 को हल कीजिए।
केंद्र (1, 2) वाले सभी सकेंद्री वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।
दीर्घ उत्तरीय प्रश्न
`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।
(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।
`("dy")/("d"x) = cos(x + "y") + sin(x + "y")` को हल कीजिए [संकेत : x + y = z रखिए]
`("dy")/("d"x) -3"y" = sin2x` का व्यापक हल ज्ञात कीजिए।
बिंदु (2, 1) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसका किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `(x^2 + "y"^2)/(2x"y")` है।
बिंदु (1, 0) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `("y" - 1)/(x^2 + x)` है।
मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।
बिंदु (1, 1) से गुजरने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु P (x, y) से खींची गई स्पर्श रेखा, निर्देशांक अक्षों से A और B पर इस प्रकार मिलती है कि AB का मध्य बिंदु P है।
`x ("dy")/("d"x) = "y" (log "y" – log x + 1)` को हल कीजिए।
वस्तुनिष्ठ प्रश्न- 34 से 75 तक
अवकल समीकरण `(("d"^2"y")/("d"x^2))^2 + (("dy")/("d"x))^2 = xsin(("dy")/("d"x))` की घात है
1
2
3
परिभाषित नहीं है
अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है
4
`3/2`
परिभाषित नहीं
2
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^(1/4) + x^(1/5)` = 0, के कोटि और घात क्रमश: हैं
2 और परिभाषित नहीं
2 और 2
2 और 3
3 और 3
यदि y = e–x (Acosx + Bsinx) तब y एक हल है
`("d"^2"y")/("d"x^2) + 2("dy")/("d"x)` = 0
`("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y" ` = 0
`("d"^2"y")/("d"x^2) + 2 ("dy")/("d"x) + 2"y"` = 0
`("d"^2"y")/("d"x^2) + 2"y"` = 0
y = Acos αx + Bsin αx जहाँ A और B स्वेछ अचर हैं के लिए अवकल समीकरण है
`("d"^2"y")/("d"x^2) - alpha^2"y"` = 0
`("d"^2"y")/("d"x^2) + alpha^2"y"` = 0
`("d"^2"y")/("d"x^2) + alpha"y"` = 0
`("d"^2"y")/("d"x^2) - alpha"y"` = 0
अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______
समकोणीय अतिपरवलय
परवलय जिसका शीर्ष मूल बिंदु पर है
मूल बिंदु से होकर जाने वाली सरल रेखा
वृत्त जिसका केद्र मूल बिंदु पर है
अवकल समीकरण `cosx ("dy")/("d"x) + "y"sinx` = 1 का समाकलन गुणक है।
cosx
tanx
secx
sinx
अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।
tanx + tany = k
tanx – tany = k
`tanx/tany` = k
tanx . tany = k
y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है
1
2
3
4
`(x"dy")/("d"x) - "y" = x^4 - 3x` का समाकलन गुणक है:
x
logx
`1/x`
– x
`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है
xy = – ex
xy = – e-x
xy = – 1
y = 2ex – 1
`("dy")/("d"x) = ("y" + 1)/(x - 1)`, जब y (1) = 2 है के हलों की संख्या है।
कोई नहीं
एक
दो
अनंत
निम्न से कौन सा अवकल समीकरण कोटि 2 का है?
(y′ )2 + x = y2
y′ y′′ + y = sinx
y′′′ + (y′′)2 + y = 0
y′ = y2
अवकल समीकरण `(1 - x^2) ("dy")/("d"x) - x"y"` = 1 का समाकलन गुणक है
– x
`x/(1 + x^2)`
`sqrt(1 - x^2)`
`1/2 log (1 - x^2)`
tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?
`("dy")/("d"x) = (1 + "y"^2)/(1 + x^2)`
`("dy")/("d"x) = (1 + x^2)/(1 + "y"^2)`
(1 + x2) dy + (1 + y2) dx = 0
(1 + x2) dx + (1 + y2) dy = 0
अवकल समीकरण `"y" ("dy")/("d"x) + "c"` निरूपित करता है
अतिपरवलय के कुल को
परवलेय के कुल को
दीर्घ वृत्तों के कुल को
वृत्तों के कुल को
ex cosy dx – ex siny dy = 0 का व्यापक हल है
ex cosy = k
ex siny = k
ex = k cosy
ex = k siny
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^3 + 6"y"^5` = 0 की घात है
1
2
3
5
`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0 का हल है
y = ex (x – 1)
y = xe–x
y = xe–x + 1
y = (x + 1)e–x
अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है
cosx
secx
ecosx
esecx
अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है
y = tan–1x
y – x = k (1 + xy)
x = tan–1y
tan (xy) = k
अवकल समीकरण `("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक है
`x/"e"^x`
`"e"^x/x`
xex
ex
y = aemx+ be–mx निम्न में से किस अवकल समीकरण को संतुष्ट करता है
`("dy")/("d"x) + "my"` = 0
`("dy")/("d"x) - "my"` = 0
`("d"^2"y")/("d"x^2) - "m"^2"y"` = 0
`("d"^2"y")/("d"x^2) + "m"^2"y"` = 0
अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है
`sinx/siny` = c
sinx siny = c
sinx + siny = c
cosx cosy = c
`x ("dy")/("d"x) + "y"` = ex का हल है
y = `"e"^x/x + "k"/x`
y = xex + cx
y = xex + k
x = `"e"^y/y + "k"/y`
वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है
`(x^2 - "y"^2) ("dy")/("d"x)` = 2xy
`2(x^2 + "y"^2) ("dy")/("d"x)` = xy
`2(x^2 - "y"^2) ("dy")/("d"x)` = xy
`(x^2 + "y"^2) ("dy")/("d"x)` = 2xy
वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है
3
2
1
परिभाषित नहीं है
`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है
`"e"^(x^2 - "y")` = c
`"e"^-"y" + "e"^(x^2)` = c
`"e"^-"y" = "e"^(x^2)` + c
`"e"^(x^2 + "y")` = c
वह वक्र जिसके लिए किसी बिंदु पर स्पर्श रेखा की प्रवणता उस बिंदु के x-अक्ष (भुज) तथा y-अक्ष (कोटि) के अनुपात के बराबर है वह है
दीर्घ वृत्त
परवलय
वृत्त
समकोणीय अतिपरवलय
अवकल समीकरण `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है
`"y" = "ce"^((-x^2)/2) `
`"y" = "ce"^((x^2)/2) `
y = `(x + "c")"e"^((x^2)/2`
y = `("c" - x)"e"^((x^2)/2`
समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है
`(2x - 1)/(2"y" + 3)` = k
`("y" + 1)/(2x - 3)` = k
`(2x + 3)/(2"y" - 1)` = k
`(2x - 1)/(2"y" - 1)` = k
अवकल समीकरण जिसका एक हल y = acosx + bsinx है
`("d"^2"y")/("d"x^2) + "y"` = 0
`("d"^2"y")/("d"x^2) - "y"` = 0
`("d"^2"y")/("d"x^2) + ("a" + "b")"y"` = 0
`("d"^2"y")/("d"x^2) + ("a" - "b")"y"` = 0
`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है
y = e–x (x – 1)
y = xex
y = xe–x + 1
y = xe–x
अवकल समीकरण `(("d"^3"y")/("d"x^3))^2 - 3 ("d"^2"y")/("d"x^2) + 2(("dy")/("d"x))^4` = y4 की कोटि तथा घात क्रमश: है
1, 4
3, 4
2, 1
3, 2
अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है
`2, 3/2`
2, 3
2, 1
3, 4
वक्र कुल y2 = 4a(x + a) का अवकल समीकरण है
`"y"^2 - 4 ("dy")/("d"x)(x + ("dy")/("d"x))`
`2"y" ("dy")/("d"x)` = 4a
`"y" ("d"^2"y")/("d"x^2) + (("dy")/("d"x))^2` = 0
`2x ("dy")/("d"x) + "y"(("dy")/("d"x))^2 - "y"`
`("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + "y"` = 0 का निम्त में से कौन सा व्यापक हल है
y = (Ax + B)ex
y = (Ax + B)e–x
y = Aex + Be–x
y = Acosx + Bsinx
`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है
y secx = tanx + c
y tanx = secx + c
tanx = y tanx + c
x secx = tany + c
अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है
x (y + cosx) = sinx + c
x (y – cosx) = sinx + c
xy cosx = sinx + c
x (y + cosx) = cosx + c
अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है
(y + 1) = k(ex + 1)
y + 1 = ex + 1 + k
y = log {k(y + 1)(ex + 1)}
y = `log{("e"^x + 1)/("y" + 1)} + "k"`
अवकल समीकरण `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"` का हल है
y =`"e"^(x - "y") = x^2 "e"^-"y" + "c"`
`"e"^"y" - "e"^x = x^3/3 + "c"`
`"e"^x + "e"^"y" = x^3/3 + "c"`
`"e"^x - "e"^"y" = x^3/3 + "c"`
अवकल समीकरण `("dy")/("d"x) + (2x"y")/(1 + x^2) = 1/(1 + x^2)^2` का हल है
y(1 + x2) = c + tan–1x
`y/(1 + x^2) = "c" + tan^-1x`
y log(1 + x2) = c + tan–1x
y(1 + x2) = c + sin–1x
नीचे दिए गए प्रश्नों (i से xi तक) में रिक्त स्थान भरिए-
अवकल समीकरण `("d"^2"y")/("d"x^2) + "e"^(("dy")/("d"x))` = 0 की घात ______ है।
अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।
कोटि तीन के अवकल समीकरण के व्यापक हल में स्वेच्छ अचरों की संख्या ______ है।
`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।
`("d"x)/("d"x) + "P"_1x = "Q"_1` प्रकार के अवकल समीकरण का व्यापक हल ______ है।
अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।
`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।
अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।
`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।
अवकल समीकरण coty dx = xdy का हल ______ है।
`("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक ______ है।
बताइए कि दिए गए कथन सत्य हैं या असत्य हैं?
अवकल समीकरण `("d"x)/("dy") + "P"_1x = "Q"_1` के समाकलन गुणक को `"e"^(int "P"_1"dy")` से लिखा जाता है।
सत्य
असत्य
`("d"x)/("dy") + "p"_1x = "Q"_1` प्रकार के अवकल समीकरण के हल को x.I.F. = `("I"."F") xx "Q"_1"dy"` द्वारा दिया जाता है।
सत्य
असत्य
`("dy")/("d"x) = "f"(x, "y")` जहाँ f (x, y) एक शून्य घात वाला समघातीय फलन है, को हल करने के लिए सही प्रतिस्थापन y = vx है।
सत्य
असत्य
`("d"x)/("dy") = "g"(x, "y")` जहाँ g (x, y) एक शून्य घात वाला समघातीय फलन है, प्रकार के अवकल समीकरण को हल करने के लिए सही प्रतिस्थापन x = vy है।
सत्य
असत्य
द्वितीय कोटि के अवकल समीकरण के विशिष्ट हल में स्वेच्छ अचरों की संख्या ं
दो होती है।
सत्य
असत्य
वृत्तों के कुल x2 + (y – a)2 = a2 को निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।
सत्य
असत्य
`("dy")/("d"x) = ("y"/x)^(1/3)` का हल `"y"^(2/3) - x^(2/3)` = c है।
सत्य
असत्य
वक्रों के कुल y = ex (Acosx + Bsinx) को निरूपित करने वाला अवकल समीकरण `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y"` = 0 है।
सत्य
असत्य
अवकल समीकरण `("dy")/("d"x) = (x + 2"y")/x` का हल x + y = kx2 है।
सत्य
असत्य
`x("dy")/("d"x) = "y" + x tan "y"/x` का हल `sin("y"/x)` = cx है।
सत्य
असत्य
एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल
समीकरण `("d"^2x)/("dy"^2)` = 0 है।
सत्य
असत्य
Solutions for 9: अवकल समीकरण
![NCERT Exemplar solutions for Mathematics [Hindi] Class 12 chapter 9 - अवकल समीकरण NCERT Exemplar solutions for Mathematics [Hindi] Class 12 chapter 9 - अवकल समीकरण - Shaalaa.com](/images/mathematics-hindi-class-12_6:5f2b1b2038084cf381bfa42c826a928c.jpg)
NCERT Exemplar solutions for Mathematics [Hindi] Class 12 chapter 9 - अवकल समीकरण
Shaalaa.com has the CBSE Mathematics Mathematics [Hindi] Class 12 CBSE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. NCERT Exemplar solutions for Mathematics Mathematics [Hindi] Class 12 CBSE 9 (अवकल समीकरण) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. NCERT Exemplar textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [Hindi] Class 12 chapter 9 अवकल समीकरण are अवकल समीकरण, अवकल समीकरणों की आधारभूत संकल्पनाएँ, अवकल समीकरण का व्यापक एवं विशिष्ट हल, दिए हुए व्यापक हल वाले अवकल समीकरण का निर्माण, प्रथम कोटि एवं प्रथम घात के अवकाल समीकरणों को हल करने की विधियाँ, पृथक्करणीय चर वाले अवकल समीकरण, समघातीय अनकल समीकरण, रैखिक अवकल समीकरण.
Using NCERT Exemplar Mathematics [Hindi] Class 12 solutions अवकल समीकरण exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in NCERT Exemplar Solutions are essential questions that can be asked in the final exam. Maximum CBSE Mathematics [Hindi] Class 12 students prefer NCERT Exemplar Textbook Solutions to score more in exams.
Get the free view of Chapter 9, अवकल समीकरण Mathematics [Hindi] Class 12 additional questions for Mathematics Mathematics [Hindi] Class 12 CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.