Advertisements
Advertisements
Question
`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।
Solution
`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल `underline(4/3 x^3/((1 + x^2)) + "c" (1 + x^2)^-1)` है।
व्याख्या:
दिया गया अवकल समीकरण `(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 है।
⇒ `("dy")/("d"x) + (2x"y")/(1 + x^2) = (4x^2)/(1 + x^2)`
क्योंकि यह एक रैखिक अवकल समीकरण है।
∴ P = `(2x)/(1 + x^2)` और Q = `(4x^2)/(1 + x^2)`
समाकलन गुणक I.F. = `"e"^(int "Pdx")`
= `"e"^(int (2x)/(1 + x^2) "d"x)`
= `"e"^(log(1 + x^2))`
= `(1 + x^2)`
∴ हल `"y" xx "I"."F" = int "Q" xx "I"."F". "d"x + "c"` है।
⇒ `"y" xx (1 + x^2) = int (4x)/(1 + x^2) xx (1 + x^2)"d"x + "c"`
⇒ `"y" xx (1 + x^2) = int 4x^2 "d"x + "c"`
⇒ `"y" xx (1 + x^2) = 4/3 x^3 + "c"`
⇒ y = `4/3 x^3/((1 + x^2)) + "c"(1 + x^2)^-1`
APPEARS IN
RELATED QUESTIONS
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`dy/dx + 2 y tan x = sin x`; y = 0 यदि x = `pi/4`
अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।
एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए।
उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता `"y" + "y"/x` है।
बिंदु 1,`pi/4` से जाने वाले वक् का समीकरण ज्ञात कीजिए यदि किसी बिंदु P (x, y) पर वक्र की स्पर्श रेखा की प्रवणता `"y"/x - cos^2"y"/x` है।
`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।
बताइए कि समीकरण xdy – ydx = `sqrt(x^2 + "y"^2) "d"x` किस प्रकार का अवकल समीकरण है तथा इसे हल कीजिए।
अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है
अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।
अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।
ydx – xdy = x2 ydx को हल कीजिए।
अवकल समीकरण `"dy"/"dx"` = 1 + x + y2 + xy2, को हल कीजिए जब y = 0, x = 0
`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।
(x + y) (dx – dy) = dx + dy को हल कीजिए। [संकेत : dx और dy को पृथक करने के पश्चात x + y = z रखिए ]
Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए।
केंद्र (1, 2) वाले सभी सकेंद्री वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।
बिंदु (1, 0) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `("y" - 1)/(x^2 + x)` है।
अवकल समीकरण `(("d"^2"y")/("d"x^2))^2 + (("dy")/("d"x))^2 = xsin(("dy")/("d"x))` की घात है
अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।
y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है
`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है
अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है
वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है
अवकल समीकरण जिसका एक हल y = acosx + bsinx है
`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।
`("d"x)/("dy") = "g"(x, "y")` जहाँ g (x, y) एक शून्य घात वाला समघातीय फलन है, प्रकार के अवकल समीकरण को हल करने के लिए सही प्रतिस्थापन x = vy है।
वृत्तों के कुल x2 + (y – a)2 = a2 को निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।
अवकल समीकरण `("dy")/("d"x) = (x + 2"y")/x` का हल x + y = kx2 है।