English

अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है। - Mathematics (गणित)

Advertisements
Advertisements

Question

अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।

Options

  • tanx + tany = k

  • tanx – tany = k

  • `tanx/tany` = k

  • tanx . tany = k

MCQ

Solution

सही उत्तर tanx . tany = k है।

व्याख्या:

दिया गया अवकल समीकरण tan y sec2x dx + tan x sec2y dy = 0 है।

⇒ tan x sec2y dy = – tan y sec2x dx

⇒ `(sec^2"y")/tan"y" * "dy" = (-sec^2x)/tanx * "d"x`

दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है

⇒ `int (sec^2"y")/tan"y" "dy" = int (-sec^2x)/tanx  "d"x`

⇒ `log |tan "y"| = - log |tan x| + log "c"`

⇒ `log |tan "y"| + log |tan x| = log "c"`

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - प्रश्नावली [Page 192]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 9 अवकल समीकरण
प्रश्नावली | Q 41 | Page 192

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + 3y = e^(- 2x)`


अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।


अवकल समीकरण `"dy"/"dx"` = yex,  x = 0, y = e में y का मान बताएं जब x = 1


अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।


मूल बिंदु से गुजरने वाली सरल रेखाओं के कुल का अवकल समीकरण ज्ञात कीजिए।


`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।


अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।


दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।


F(x, y) = `(x^2 + y^2)/(x - y)` कोटि 1 का समघातीय फलन है।


दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।


अवकल समीकरण  `"dy"/"dx"` = 1 + x + y2 + xy2,  को हल कीजिए जब y = 0, x = 0


यदि y (x) समीकरण `((2 + sinx)/(1 + "y"))"dy"/"dx"` = – cosx  का हल है और y (0) = 1, है तब  `"y"(pi/2)` का मान ज्ञात कीजिए।


(x + y) (dx – dy) = dx + dy को हल कीजिए। [संकेत : dx और dy को पृथक करने के पश्चात x + y = z रखिए ]


`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।


(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।


`("dy")/("d"x) -3"y" = sin2x` का व्यापक हल ज्ञात कीजिए।


अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है


`x ("dy")/("d"x) + "y"` = ex का हल है


अवकल समीकरण  `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है


अवकल समीकरण जिसका एक हल y = acosx + bsinx है


अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।


 `("dy")/("d"x) = "f"(x, "y")` जहाँ f (x, y) एक शून्य घात वाला समघातीय फलन है, को हल करने के लिए सही प्रतिस्थापन y = vx है।


वृत्तों के कुल x2 + (y – a)2 = aको निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।


`("dy")/("d"x) = ("y"/x)^(1/3)` का हल  `"y"^(2/3) - x^(2/3)` = c है।


वक्रों के कुल y = ex (Acosx + Bsinx)  को निरूपित करने वाला अवकल समीकरण `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y"` = 0  है।


अवकल समीकरण `("dy")/("d"x) = (x + 2"y")/x` का हल x + y = kx2 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×