Advertisements
Advertisements
Question
`("dy")/("d"x) = ("y"/x)^(1/3)` का हल `"y"^(2/3) - x^(2/3)` = c है।
Options
सत्य
असत्य
Solution
यह कथन सत्य है।
व्याख्या:
दिया गया अवकल समीकरण `("dy")/("d"x) = ("y"/x)^(1/3)` है।
⇒ `("dy")/("d"x) = "y"^(1/3)/x^(1/3)`
⇒ `("dy")/"y"^(1/3) = ("d"x)/x^(1/3)`
दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है
`int ("dy")/"y"^(1/3) = int ("d"x)/x^(1/3)`
⇒ `int "y"^(-1/3) "dy" = int x^(-1/3) "d"x`
⇒ `1/(- 1/3 + 1) "y"^(-1/3 + 1) = 1/(-1/3 + 1) * x^(-1/3) "d"x`
⇒ `1/(- 1/3 + 1) "y"^(-1/3 + 1) = 1/(-1/3 + 1) * x^(-1/3 + 1) + "c"`
⇒ `3/2 "y"^(2/3) = 3/2 x^(2/3) + "c"`
⇒ `"y"^(2/3) = x^(2/3) + 2/3 "c"`
⇒ `"y"^(2/3) - x^(2/3) = "k"["k" = 2/3 "c"]`
APPEARS IN
RELATED QUESTIONS
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
(1 + x2)dy + 2xy dx = cot x dx (x ≠ 0)
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`(x + 3y^2) dy/dx = y, (y > 0)`
अवकल समीकरण `"dy"/"dx"` = yex, x = 0, y = e में y का मान बताएं जब x = 1
अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है
अवकल समीकरण `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 की घात ______ हैं।
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।
अवकल समीकरण `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` को हल करने के लिए उपयुक्त प्रतिस्थापन ______ है।
अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।
जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।
अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।
अवकल समीकरण `("d"^2"y")/("d"x^2) - x^2 "dy"/"dx" + x"y"` = x का एक विशिष्ट हल y = x है।
`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।
एक तल में सभी रेखाएँ जो ऊर्ध्वाधर नहीं हैं के लिए अवकल समीकरण ज्ञात कीजिए।
अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।
यदि y (x) समीकरण `((2 + sinx)/(1 + "y"))"dy"/"dx"` = – cosx का हल है और y (0) = 1, है तब `"y"(pi/2)` का मान ज्ञात कीजिए।
`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।
अवकल समीकरण `(("d"^2"y")/("d"x^2))^2 + (("dy")/("d"x))^2 = xsin(("dy")/("d"x))` की घात है
`(x"dy")/("d"x) - "y" = x^4 - 3x` का समाकलन गुणक है:
अवकल समीकरण `"y" ("dy")/("d"x) + "c"` निरूपित करता है
वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है
वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है
`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है
अवकल समीकरण जिसका एक हल y = acosx + bsinx है
अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है
`("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + "y"` = 0 का निम्त में से कौन सा व्यापक हल है
अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है
`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।