English

Dydeydydx=2xex2-y का व्यापक हल है - Mathematics (गणित)

Advertisements
Advertisements

Question

`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है

Options

  • `"e"^(x^2 - "y")` = c

  • `"e"^-"y" + "e"^(x^2)` = c

  • `"e"^-"y" = "e"^(x^2)` + c

  • `"e"^(x^2 + "y")` = c

MCQ

Solution

सही उत्तर `underline("e"^-"y" = "e"^(x^2) + "c")` है।

व्याख्या:

दिया गया अवकल समीकरण `("dy")/("d"x) = 2x"e"^(x^2 - "y")` है।

⇒ `("dy")/("d"x) = 2x . "e"^(x^2) . "e"^-"y"`

⇒ `("dy")/("e"^-"y") = 2x . "e"^(x^2)  "d"x`

दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है

`int ("dy")/("e"^-"y") = int 2x . "e"^(x^2)  "d"x`

⇒ `int "e"^"y"  "dy" = int 2x . "e"^(x^2)  "d"x`

R.H.S. में x2 = t रखिए

∴ 2x dx = dt

∴ `int "e"^"y"  "dy" = int "e"^"t"  "dt"`

⇒ ey = et + c

⇒ ey = `"e"^("y"^2) + "c"`

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - प्रश्नावली [Page 194]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 9 अवकल समीकरण
प्रश्नावली | Q 61 | Page 194

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + y/x + x^2`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + (sec x)y = tan x (0 <= x <= pi/2)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`(x + y) dy/dx = 1`


उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता `"y" + "y"/x` है।


बताइए कि समीकरण xdy – ydx = `sqrt(x^2 + "y"^2)  "d"x` किस प्रकार का अवकल समीकरण है तथा इसे हल कीजिए। 


अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है


`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।


दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।


अवकल समीकरण `"dy"/"dx" + 2x"y"` = y को हल कीजिए।


यदि y (x) समीकरण `((2 + sinx)/(1 + "y"))"dy"/"dx"` = – cosx  का हल है और y (0) = 1, है तब  `"y"(pi/2)` का मान ज्ञात कीजिए।


उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।


(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।


`("dy")/("d"x) = cos(x + "y") + sin(x + "y")` को हल कीजिए [संकेत : x + y = z रखिए]


मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।


बिंदु (1, 1) से गुजरने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु P (x, y) से खींची गई स्पर्श रेखा, निर्देशांक अक्षों से A और B पर इस प्रकार मिलती है कि AB का मध्य बिंदु P है।


अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।


y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है


अवकल समीकरण `(1 - x^2) ("dy")/("d"x) - x"y"` = 1 का समाकलन गुणक है


अवकल समीकरण `"y" ("dy")/("d"x) + "c"` निरूपित करता है


ex cosy dx – ex siny dy = 0 का व्यापक हल है


अवकल समीकरण `("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक है


`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है


वक्र कुल  y2 = 4a(x + a) का अवकल समीकरण है


अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है


अवकल समीकरण coty dx = xdy का हल ______ है।


`("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक ______ है।


अवकल समीकरण `("dy")/("d"x) = (x + 2"y")/x` का हल x + y = kx2 है।


`x("dy")/("d"x) = "y" + x tan  "y"/x` का हल `sin("y"/x)` = cx है।


एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल

समीकरण `("d"^2x)/("dy"^2)` = 0 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×